精英家教网 > 高中数学 > 题目详情
8.已知0(0,0),A(3,0),B(0,4),P是△OAB的内切圆上一动点,则以PO、PA、PB为半径的三个圆面积之和的最大值为(  )
A.10πB.12πC.22πD.25π

分析 由题意可得内切圆的方程为(x-1)2+(y-1)2=1,可得3x2+3y2-6x-6y+3=0,整体代入|PA|2+|PB|2+|PO|2=-2y+22,由函数的思想可得最值.

解答 解:设△OAB内切圆的圆心为(a,a)
∵0(0,0),A(3,0),B(0,4),
∴|OA|=3,|OB|=4,|AB|=5,
由等面积可得$\frac{1}{2}×3×4$=$\frac{1}{2}$(3+4+5)a,解得a=1
∴△OAB内切圆的圆心为(1,1),半径为1,
∴△OAB内切圆方程为(x-1)2+(y-1)2=1;
∵点P是△ABO内切圆上一点,设P(x,y)
则(x-1)2+(y-1)2=1,
∴x2+y2-2x-2y+1=0,
∴3x2+3y2-6x-6y+3=0,
∴|PA|2+|PB|2+|PO|2=(x-3)2+y2+x2+(y-4)2+x2+y2
=3x2+3y2-6x-8y+25=3x2+3y2-6x-6y+3-2y+22=-2y+22
∴|PA|2+|PB|2+|PC|2=-2y+22,(0≤y≤2),
∴y=0时上式取最大值22,
∴PO、PA、PB为半径的三个圆面积之和的最大值为π(|PA|2+|PB|2+|PC|2)=22π.
故选:C.

点评 本题考查直线和圆的位置关系,涉及等面积和整体思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=logax(a>0且a≠1),函数g(x)=-x2+bx+c,且f(4)-f(2)=1,g(x)的图象过点A(4,-5)及B(-2,-5).
(1)求f(x)和g(x)的表达式;
(2)求函数f[g(x)]的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.实数m为何值时,关于x的方程7x2-(m+13)x+m2-m-2=0的两个实根x1,x2满足0<x1<x2<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\frac{cos(180°+α)sin(α+360°)sin(540°+α)}{sin(-α-180°)cos(-180°-α)}$=lg$\frac{1}{\root{3}{10}}$,求$\frac{cos(π+α)}{cosα[cos(π-α)-1]}$+$\frac{cos(α-2π)}{cosαcos(π-α)+cos(α-2π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)是偶函数,若f(x)在区间[1,2]上是减函数,在区间[2,3]上是增函数,则f(x)(  )
A.在区间[-2,-1]上是增函数,在区间[-3,-2]上是增函效
B.在区间[-2,-1]上是增函数,在区间[-3,-2]上是减函数
C.在区间[-2,-1]上是减函数,在区间[-3,-2]上是增函数
D.在区间[-2,-1]上是减函数,在区间[-3,-2]上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2sin(3x-$\frac{π}{6}$).
(1)求f(0)、f($\frac{2π}{9}$);
(2)分别指出函数f(x)的振幅、相位、初相位的值,并求出其最小正周期;
(3)求函数f(x)的递增区间和递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设区域G为圆C1:x2+y2=$\frac{1}{2}$的外部与圆C2:x2+y2=2的内部的公共部分,点P(x,y)在G中运动,求点Q(x+y,x-y)的轨迹方程,并作出它的图形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2sin(ωx+$\frac{π}{3}$)+cos(ωx-$\frac{π}{6}$)(ω>0)的最小正周期为π.
(1)求函数f(x)的单调递减区间,其图象对称轴的方程和对称中心的坐标;
(2)作出该函数在一个周期内的简图;
(3)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$f(x)={log_3}(-{x^2}+2x)$的单调递减区间为(  )
A.(1,+∞)B.(1,2)C.(0,1)D.(-∞,1)

查看答案和解析>>

同步练习册答案