精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\left\{\begin{array}{l}{x^3},x≤a\\{x^2},x>a.\end{array}$若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是(  )
A.(-∞,-1)∪(0,+∞)B.(-∞,0)∪(1,+∞)C.(-∞,0)D.(0,1)

分析 由g(x)=f(x)-b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围

解答 解:∵g(x)=f(x)-b有两个零点,
∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,
由x3=x2可得,x=0或x=1
①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意

②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意
③当0<a<1时,函数f(x)单调递增,故不符合题意

④a=0时,f(x)单调递增,故不符合题意
⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点

综上可得,a<0或a>1
则a的取值范围是(-∞,0)∪(1,+∞),
故选:B.

点评 本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.宜宾三中举行的电脑知识竞赛中,将高二年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.则第二小组的小长方形的高为(  )
A.0.04B.0.40C.0.10D.0.025

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A、B、C为函数y=logax(0<a<1)的图象上的三点,它们的横坐标分别是t,t+2,t+4(t>1).
(1)设△ABC的面积为S,求S=f(t);
(2)求函数S=f(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=log${\;}_{\frac{1}{2}}$x在[2,4]上的最大值与最小值的差为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆C:(x-3)2+(y-4)2=1和两点A(1-m,0),B(1+m,0),m>0,若圆C上存在点P,使得∠APB=90°,则m的最大值为2$\sqrt{5}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=3x,若实数x1,x2,…x2015满足x1+x2+…+x2015=3,则f(x1)f(x2)…f(x2015)的值=27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.关于集合下列正确的是(  )
A.0∉NB.∅∈RC.0∉N*D.$\frac{1}{2}$∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.抛物线y=4x2的焦点到准线的距离是$\frac{1}{8}$,准线方程为y=-$\frac{1}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若数列{an}满足:an+1=$\frac{1}{1{-a}_{n}}$,a8=2,则a1a2•…•a2015=(  )
A.-1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.-2

查看答案和解析>>

同步练习册答案