【题目】在△ABC中,a,c,________.(补充条件)
(1)求△ABC的面积;
(2)求sin(A+B).
从①b=4,②cosB,③sinA这三个条件中任选一个,补充在上面问题中并作答.
【答案】详见解析
【解析】
选择①(1)先由余弦定理求得cosC,进而求得sinC,由此求得面积;
(2)sin(A+B)=sinC,直接可以得出答案;
选择②(1)利用平方关系求得sinB,进而求得面积;
(2)先由余弦定理求得b,再由正弦定理求得sinC,进而得解;
选择③(1)先由平方关系求得cosA,再由余弦定理求得b,进而求得面积;
(2)由正弦定理可得,由此即可得解.
选择①
(1)在△ABC中,因为,,b=4,
由余弦定理得,
因为C∈(0,π),所以,
所以.
(2)在△ABC中,A+B=π﹣C.
所以.
选择②
(1)因为,B∈(0,π),所以,
因为,,所以.
(2)因为,,,
由b2=a2+c2﹣2accosB,得,
解得b=4,
由,解得,
在△ABC中,A+B=π﹣C,.
选择③
依题意,A为锐角,由,得,
在△ABC中,因为,,,
由余弦定理a2=b2+c2﹣2bccosA,得,
解得b=2或b=4,
(1)当b=2时,.
当b=4时,.
(2)由,,,,得,
在△ABC中,A+B=π﹣C,.
科目:高中数学 来源: 题型:
【题目】现有甲、乙、丙、丁、戊5种在线教学软件,若某学校要从中随机选取3种作为教师“停课不停学”的教学工具,则其中甲、乙、丙至多有2种被选取的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,为抛物线上不同的两点,且,点且于点.
(1)求的值;
(2)过轴上一点 的直线交于,两点,在的准线上的射影分别为,为的焦点,若,求中点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an=(n∈N*,n≥2),数列{bn}满足关系式bn=(n∈N*).
(1)求证:数列{bn}为等差数列;
(2)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角坐标系xOy中,椭圆(a>b>0)的短轴长为,离心率为.
(1)求椭圆的方程;
(2)斜率为1且经过椭圆的右焦点的直线交椭圆于P1、P2两点,P是椭圆上任意一点,若(λ,μ∈R),证明:λ2+μ2为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为.
(1)写出直线和曲线的直角坐标方程;
(2)过动点且平行于的直线交曲线于两点,若,求动点到直线的最近距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求直线的普通方程及曲线的直角坐标方程;
(Ⅱ)已知点是曲线上的任意一点,当点到直线的距离最大时,求经过点且与直线平行的直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com