精英家教网 > 高中数学 > 题目详情

【题目】已知一个动圆与两个定圆均相切,其圆心的轨迹为曲线C.

(1) 求曲线C的方程;

(2) 过点F()做两条可相垂直的直线,设与曲线C交于A,B两点, 与曲线 C交于C,D两点,线段AC,BD分别与直线交于M,M,N两点。求证|MF|:|NF|为定值.

【答案】(1)2证明见解析.

【解析】试题分析:1设动圆圆心为,半径为根据题设条件可得 再结合椭圆的第一定义即可得出曲线的方程;(2分别讨论 是否平行于坐标轴,当不平行于坐标轴时,设出 将方程代入到曲线的方程结合韦达定理求出 点的坐标即可求出为定值.

试题解析:(1)设动圆圆心为,半径为

∵两个定圆为

∴其圆心分别为 ,半径分别为

∴两个定圆相内含

∵动圆与两个圆均相切

∴动点的轨迹为以 为焦点,以4为长轴长的椭圆

∴曲线的方程为

2 平行于坐标轴时,可知

不平行于坐标轴时,设

的方程代入曲线的方程中消去化简得:

同理可得

由直线中令可得

与曲线交于 两点, 与曲线交于 两点

代入①式化简得

同理可得

综上所述,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲乙丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比乙车更省油.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)与轴有唯一的公关点

(Ⅰ)求函数的单调区间

(Ⅱ)曲线在点处的切线斜率为若存在不相等的正实数满足证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是边长为3的正方形,DE⊥平面ABCDAF∥DEDE=3AFBE与平面ABCD所成角为60°

)求证:AC⊥平面BDE

)求二面角F﹣BE﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,将曲线上的所有点横坐标伸长为原来的倍,纵坐标伸长为原来的2倍后,得到曲线,在以为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程是.

(1)写出曲线的参数方程和直线的直角坐标方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为.

Ⅰ)求椭圆的方程;

Ⅱ)设过点的直线与椭圆相交于两点,关于原点的对称点为,若点总在以线段为直径的圆内,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的左焦点为F(10),经过点F的直线l0与椭圆交于AB两点.当直线l0x轴时,|AB|.

(1)求椭圆C的方程;

(2)作直线lx轴,分别过ABAA1l,垂足为A1BB1l,垂足为B1,且△A1FB1是直角三角形.问:是否存在直线l使得∠A1FO2B1FO?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,C1的参数方程为 (t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,C2的极坐标方程ρ2-2ρcos θ-3=0.

(Ⅰ)说明C2是哪种曲线,并将C2的方程化为普通方程;

()C1C2有两个公共点AB定点P的极坐标求线段AB的长及定点PAB两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,底面ABCD为正方形,△GAD为等边三角形,BF⊥平面ABCD,∠GDC=90°,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.

(Ⅰ)求证:AP⊥平面GCD

(Ⅱ)求证:平面ADG∥平面FBC

(Ⅲ)若AP∥平面BDE,求的值.

查看答案和解析>>

同步练习册答案