精英家教网 > 高中数学 > 题目详情

已知数学公式数学公式
(1)求tanα的值;
(2)求数学公式的值.

解:(1)因为,所以,…(3分)
.…(5分)
(2)…(10分)=.…(12分)
分析:(1)通过角的范围求出正弦函数值,然后求出 tanα的值.
(2)利用诱导公式以及二倍角公式,化简函数的表达式为余弦函数的形式,代入数据求解即可.
点评:本题是中档题,考查三角函数的诱导公式的应用,二倍角公式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1(-1,0),F2(1,0),点p满足|
PF
1
|+|
PF
2
|=2
2
,记点P的轨迹为E.
(Ⅰ)求轨迹E的方程;
(Ⅱ)过点F2(1,0)作直线l与轨迹E交于不同的两点A、B,设
F2A
F2B
,T(2,0),,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系xoy中,如图,已知椭圆
x2
9
+
y2
5
=1
的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足PF2-PB2=4,求点P的轨迹;
(2)设x1=2,x2=
1
3
,求点T的坐标;
(3)设t=9,求证:直线MN必过x轴上的一定点(其坐标与m无关).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)如图,已知椭圆
x2
16
+
y2
7
=1
的左、右顶点分别为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)设动点P满足|PF|2-|PB|2=3,求点P的轨迹;
(2)若x1=3,x2=
1
2
,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴(垂足为T),与抛物线交于不同的两点P、Q且
F1P
F2Q
=-5

(I)求点T的横坐标x0
(II)若以F1,F2为焦点的椭圆C过点(1,
2
2
)

①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,设
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点(1,
2
2
)

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设点T(2,0),过点F2作直线l与椭圆C交于A,B两点,且
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范围.

查看答案和解析>>

同步练习册答案