精英家教网 > 高中数学 > 题目详情

设点A(,0),B(,0),直线AM、BM相交于点M,且它们的斜率之积为.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若直线过点F(1,0)且绕F旋转,与圆相交于P、Q两点,与轨迹C相交于R、S两点,若|PQ|求△的面积的最大值和最小值(F′为轨迹C的左焦点).

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)根据椭圆的定义、几何性质可求;(Ⅱ)直线与椭圆相交,联立消元,设点代入化简,利用基本不等式求最值.
试题解析:(Ⅰ)设,则
化简  轨迹的方程为
(Ⅱ)设的距离
,将代入轨迹方程并整理得:
,则


,则上递增,


考点:椭圆,根与系数关系,基本不等式,坐标表示

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,斜率为的直线过抛物线的焦点,与抛物线交于两点A、B, M为抛物线弧AB上的动点.

(Ⅰ).若,求抛物线的方程;
(Ⅱ).求△ABM面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)把的参数方程化为极坐标方程;
(Ⅱ)求交点的极坐标().

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线焦点为,直线经过点且与抛物线相交于两点

(Ⅰ)若线段的中点在直线上,求直线的方程;
(Ⅱ)若线段,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板长为2m,跳水板距水面的高为3m,=5m,=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点m()时达到距水面最大高度4m,规定:以为横轴,为纵轴建立直角坐标系.

(1)当=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域内入水时才能达到压水花的训练要求,求达到压水花的训练要求时的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点,且垂直于椭圆的长轴,动直线垂直于,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设轴交于点,不同的两点上(也不重合),且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知点为动点,且直线与直线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设过点的直线与曲线相交于不同的两点.若点轴上,且,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的对称中心为坐标原点,上焦点为,离心率.

(Ⅰ)求椭圆的方程;
(Ⅱ)设轴上的动点,过点作直线与直线垂直,试探究直线与椭圆的位置关系.

查看答案和解析>>

同步练习册答案