15.若关于x的方程x2-2x+2-a=0的两根分别为x1,x2,分别探究满足下列条件的实数a的取值范围.
(1)x1>0,x2>0;
(2)x1>2,x2<-1.
分析 (1)有两根,所以大前提是△≥0,然后根据韦达定理列出含参数a的不等式;
(2)有两根,所以大前提是△≥0,然后由两根函数值的大小列出含参数a的不等式.
解答 (1)由题意,x1>0,x2>0可知,
△=(-2)2-4×1×(2-a)≥0且x1x2=$\frac{2-a}{1}$>0,
得1≤a<2;
(2)由题意,x1>2,x2<-1可知,
△=(-2)2-4×1×(2-a)≥0且f(2)<0且f(-1)<0,
解得a>5.
点评 考察二次函数的根与系数的关系问题时一定要注意有几个根,注意判别式的取值范围.