精英家教网 > 高中数学 > 题目详情
19.f(x)=2x-cosx在(-∞,+∞)上(  )
A.有最大值B.是减函数C.是增函数D.有最小值

分析 根据题意,对f(x)求导可得f′(x)=2+sinx>0,由导数与单调性的关系分析可得f(x)为增函数,结合函数的定义域分析可得f(x)没有最大值,综合可得答案.

解答 解:根据题意,f(x)=2x-cosx,
则导数f′(x)=2+sinx>0,
故函数f(x)为增函数,
又由x∈R,故函数f(x)没有最大值;
故选:C.

点评 本题考查导数与单调性的关系,关键是正确求出函数的导数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{sinx+a}{{e}^{x}}$,(a∈R)
(1)若f(x)在x=0处取得极值,确定a的值.
(2)若f(x)在R上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如果10N的力能使弹簧压缩0.1m,为在弹性限度内将弹簧从平衡位置拉到离平衡位置0.06m处,则克服弹力所做的功为(  )
A.0.28JB.0.12JC.0.26JD.0.18J

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.cos$(\frac{-13π}{4})$的值为(  )
A.$-\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,a1=2,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(n∈N+),
(1)计算a2、a3、a4并由此猜想通项公式an
(2)证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等比数列{an}满足:${a_1}=\frac{1}{2},2{a_3}={a_2}$
(1)求数列{an}的通项公式;
(2)若等差数列{bn}的前n项和为Sn,满足b1=1,S3=b2+4,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=1+2sin(2x-\frac{π}{3})$.
(1)用五点法作图作出f(x)在x∈[0,π]的图象;
(2)求f(x)在$x∈[\frac{π}{4},\frac{π}{2}]$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“a>$\frac{1}{4}$”是“关于x的不等式ax2-x+1>0恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某中学用校车接送教师上下班,从起点站出发后包括终点站一共停4个站,若在起点站上了5个人,中途没有人上车,每位老师在每个站下车的概率相等.若某站没有人下车,则校车就不停,车在终点站一定会停,起点站不算停车.
(1)求校车除终点站外只停一次的概率;
(2)设校车停车次数为ξ,求ξ的分布列和期望.

查看答案和解析>>

同步练习册答案