如图,在长方体中,,点是棱上的一个动点.
(1)证明:;
(2)当为的中点时,求点到面的距离;
(3)线段的长为何值时,二面角的大小为.
(1)详见解析;(2);(3).
解析试题分析:解决立体几何中的垂直、距离及空间角,有几何法与空间向量法,其中几何法,需要学生具备较强的空间想象能力及扎实的立体几何理论知识;向量法,则要求学生能根据题意准确建立空间直角坐标系,写出有效点、有效向量的坐标必须准确无误,然后将立体几何中的问题的求解转化为坐标的运算问题,这也需要学生具备较好的代数运算能力.
几何法:(1)要证,只须证明平面,然后根据线面垂直的判定定理进行寻找条件即可;(2)运用的关系进行计算即可求出点到面的距离;(3)先作于,连接,然后充分利用长方体的性质证明为二面角的平面角,最后根据所给的棱长与角度进行计算即可得到线段的长.
向量法: (1)建立空间坐标,分别求出的坐标,利用数量积等于零即可;(2)当为的中点时,求点到平面的距离,只需找平面的一条过点的斜线段在平面的法向量上的投影即可;(3)设,因为平面的一个法向量为,只需求出平面的法向量,然后利用二面角为,根据夹角公式,求出即可.
试题解析:解法一:(1)∵平面,∴,又∵,∩,∴平面, 4分
(2)等体积法:由已知条件可得,,,所以为等腰三角形
=, ,设点到平面的距离,根据可得,,即,解得 8分
(3)过点作于,连接
因为平面,所以,又,∩,所以平面
故,
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点,
求证:GM∥平面ABFE.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,平面平面,是等腰直角三角形,,四边形是直角梯形,∥AE,,,分别为的中点.
(1)求异面直线与所成角的大小;
(2)求直线和平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,已知的直径,点、为上两点,且,,为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).
(Ⅰ)求证:;
(Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(Ⅲ)求二面角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:
(1)联结,求异面直线与所成角的大小;
(2)联结、,求三棱锥C1-BCA1的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com