精英家教网 > 高中数学 > 题目详情
在直角坐标系中,如果两点A(a,b),B(-a,-b)在函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作一组).函数g(x)=
sin
π
2
x,  x≤0
log4(x+1),x>0
关于原点的中心对称点的组数为
2
2
分析:利用定义,只要求出g(x)=sin
π
2
x
,x≤0,关于原点对称的函数h(x)=sin
π
2
x
,x>0,观察h(x)与g(x)=log4(x+1),x>0的交点个数,即为中心对称点的组数.
解答:解:由题意可知g(x)=sin
π
2
x
,x≤0,则函数g(x)=sin
π
2
x
,x≤0,
关于原点对称的函数为h(x)=sin
π
2
x
,x>0,
则坐标系中分别作出函数h(x)=sin
π
2
x
,x>0,g(x)=log4(x+1),x>0的图象如题
由图象可知,两个图象的交点个数有2个,
所以函数g(x)=
sin
π
2
x,  x≤0
log4(x+1),x>0
关于原点的中心对称点的组数为2组.
故答案为:2.
点评:本题主要考查函数的交点问题,利用定义先求出函数关于原点对称的函数,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在直角坐标系中,如果两点A(a,b),B(-a,-b)函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作一组).函数g(x)=
cos
π
2
x,x≤0
log4(x+1),x>0
关于原点的中心对称点的组数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,如果两点A(a,b),B(-a,-b)在函数y=f(x)的图象上,那么称[A,B]为函数f(x)的一组关于原点的中心对称点([A,B]与[B,A]看作一组).函数g(x)=
cos
π
2
x  x≤0
log4(x+1),x>0
关于原点的中心对称点的组数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•洛阳一模)在直角坐标系中,如果不同的两点A(a,b),B(-a,-b)在函数y=f(x)的图象上,那么称[A,B]为该函数的一组关于原点的中心对称点([A,B]与[B,A]看作一组),函数f(x)=
sinx,x≤0
|lgx|,x>0
关于原点的中心对称点的组数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,如果不同两点A(a,b),B(-a,-b)都在函数y=h (x )的图象上,那么称[A,B]为函数h(x)的一组“友好点”([A,B]与[B,A]看作一组).已知定义在[0,+∞)上的函数f(x)满足f(x+2)=
2
f(x),且当x∈[0,2]时,f(x)=sin
π
2
x.则函数f(x)=
f(x),0<x≤8
-
-x
,-8≤x<0
的“友好点”的组数为(  )

查看答案和解析>>

同步练习册答案