精英家教网 > 高中数学 > 题目详情
6.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1与双曲线x2-$\frac{{y}^{2}}{3}$=1
(1)证明二者焦点相同,并求出焦点坐标.
(2)已知二者的一个交点为P,焦点分别为F1,F2,求|PF1|的值.

分析 (1)由椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1可得半焦距${c}_{1}=\sqrt{16-12}$,由双曲线x2-$\frac{{y}^{2}}{3}$=1可得半焦距c2=$\sqrt{1+3}$,即可证明.
(2)对交点P分类讨论,利用椭圆与双曲线的定义即可得出.

解答 (1)证明:由椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1可得半焦距${c}_{1}=\sqrt{16-12}$=2,由双曲线x2-$\frac{{y}^{2}}{3}$=1可得半焦距c2=$\sqrt{1+3}$=2,
∴c1=c2=2.
且焦点都在x轴上,为(±2,0).
(2)①设交点P在第一或四象限,左右焦点分别为F1,F2,则|PF1|-|PF2|=2,|PF1|+|PF2|=8,
解得|PF1|=5,|PF2|=3;
②设交点P在第二或三象限,左右焦点分别为F1,F2,则|PF1|-|PF2|=-2,|PF1|+|PF2|=8,
解得|PF1|=3,|PF2|=5.

点评 本题考查了椭圆与双曲线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.f(x)=$\frac{2}{3}$x3-x2+ax-1己知曲线存在两条斜率为3的切线,且切点的横坐标都大于零,则实数a的取值范围为(  )
A.(3,+∞)B.(3,$\frac{7}{2}$)C.(-∞,$\frac{7}{2}$]D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{{x}^{2}}{144}$+$\frac{{y}^{2}}{80}$=1的右顶点到它的左焦点的距离为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在四面体S-ABC中,SA=8,SB=10,SC=AB=BC=CA=6,A′,B′,C′分别是棱SA,SB,SC上的点,且SA′=2,SB′=2.5,SC′=4,则截面A′B′C′将四面体S-ABC分成的两部分体积之比为(  )
A.$\frac{1}{24}$B.$\frac{1}{23}$C.$\frac{1}{9}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知四棱锥的底面是边长为2的正方形,侧棱长都等于$\sqrt{11}$,其俯视图如图所示.
(I)作出该四棱锥的侧视图,注明各线段的长,并计算该侧视图的面积;
(Ⅱ)求这个四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.作出下列函数一个周期的图象,并指出振幅、周期和初相:
(1)y=3sin($\frac{1}{2}$x+$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin(3x-$\frac{π}{6}$);
(3)y=$\sqrt{3}$sin2x+cos2x;
(4)y=cosx+sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.以下叙述正确的有(  )
(1)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
(2)分段函数在定义域的不同部分有不同的对应法则,但它是一个函数.
(3)若D1、D2分别是分段函数的两个不同对应法则的值域,则D1∩D2≠∅也能成立.
A.1个B.2个C.3个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求值:
(1)cos$\frac{π}{5}$cos$\frac{2π}{5}$;
(2)cos$\frac{2π}{7}$•cos$\frac{4π}{7}$•cos$\frac{6π}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列函数的周期:
(1)y=|sin2x|;
(2)y=|sin($\frac{1}{2}$x+$\frac{π}{6}$)+$\frac{1}{3}$|;
(3)y=|tan2x|.

查看答案和解析>>

同步练习册答案