精英家教网 > 高中数学 > 题目详情

【题目】某商店销售某海鲜,统计了春节前后50天该海鲜的需求量,单位:公斤),其频率分布直方图如图所示,该海鲜每天进货1次,商店每销售1公斤可获利50元;若供大于求,剩余的削价处理,每处理1公斤亏损10元;若供不应求,可从其它商店调拨,销售1公斤可获利30元.假设商店每天该海鲜的进货量为14公斤,商店的日利润为元.

(1)求商店日利润关于需求量的函数表达式;

(2)假设同组中的每个数据用该组区间的中点值代替.

①求这50天商店销售该海鲜日利润的平均数;

②估计日利润在区间内的概率.

【答案】(1) (2) ①698.8元 ②0.54

【解析】

1)根据不同的需求量,整理出函数解析式;(2)①利用频率分布直方图估计平均数的方法,结合利润函数得到平均利润;②根据利润区间,换算出需求量所在区间,从而找到对应的概率.

(1)商店的日利润关于需求量的函数表达式为:

化简得:

(2)①由频率分布直方图得:

海鲜需求量在区间的频率是

海鲜需求量在区间的频率是

海鲜需求量在区间的频率是

海鲜需求量在区间的频率是

海鲜需求量在区间的频率是

50天商店销售该海鲜日利润的平均数为:

(元)

②由于时,

显然在区间上单调递增,

,得

,得

日利润在区间内的概率即求海鲜需求量在区间的频率:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两个不共线的向量满足 .

1)若垂直,求的值;

2)当时,若存在两个不同的使得成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E的方程为 (a>b>0),点O为坐标原点,点A的坐标为(a0),点B的坐标为(0b),点M在线段AB上,满足BM2MA,直线OM的斜率为.

(1)E的离心率e

(2)设点C的坐标为(0,-b)N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.

分组

频数

频率

[10,15)

10

0.25

[15,20)

24

n

[20,25)

m

p

[25,30]

2

0.05

合计

M

1

(1)求出表中M,p及图中a的值;

(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;

(3)估计这次学生参加社区服务人数的众数、中位数以及平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的所有棱长均为2,平面平面 的中点.

(1)证明:

(2)若是棱的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由上半椭圆 )和部分抛物线 )连接而成, 的公共点为 ,其中的离心率为

(1)求 的值;

(2)过点的直线 分别交于点 (均异于点 ),是否存在直线,使得以为直径的圆恰好过点,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且椭圆过点,离心率;点在椭圆上,延长与椭圆交于点,点中点.

(1)求椭圆C的方程;

(2)若是坐标原点,记的面积之和为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

若曲线在点处的切线与直线垂直,求函数的单调区间;

若对于都有成立,试求a的取值范围;

时,函数在区间上有两个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底, 为常数).

讨论函数的单调性;

对于函数,若存在常数,对于任意,不等式都成立,则称直线是函数的分界线,,问函数与函数是否存在“分界线”?若存在,求出常数;若不存在,说明理由.

查看答案和解析>>

同步练习册答案