精英家教网 > 高中数学 > 题目详情
已知f(x)=x3+
1
2
mx2-2m2x-4
(m为常数,且m>0)有极大值-
5
2

(Ⅰ)求m的值;
(Ⅱ)求曲线y=f(x)的斜率为2的切线方程.
分析:(Ⅰ)求导函数,令f′(x)=0,进而确定函数的单调性,可得函数的极值,利用函数的极大值为-
5
2
,即可求得m的值;
(Ⅱ)求导函数,令f′(x)=2,由此可求切点的坐标,进而可得切线方程.
解答:解:(Ⅰ)求导函数f′(x)=3x2+mx-2m2=(x+m)(3x-2m)
令f′(x)=0,可得(x+m)(3x-2m)=0,∴x=-m或x=
2m
3
….(2分)        
由列表得:
x (-∞,
-m)
-m (-m,
2
3
m)
2
3
m
(
2
3
m,
+∞)
f'(x) + 0 - 0 +
f(x) 极大值 极小值
….(4分)
∴f(-m)=-m3+
1
2
m3+2m3-4=-
5
2
,∴m=1.…(6分)
(Ⅱ)由(Ⅰ)知f(x)=x3+
1
2
x2-2x-4
,则f'(x)=3x2+x-2
令f′(x)=2,可得3x2+x-2=2,∴x=1或x=-
4
3
…(8分)
f(1)=-
9
2
f(-
4
3
)=-
76
27

所以切线方程为:y+
9
2
=2(x-1)
即4x-2y-13=0;…(10分)
y+
76
27
=2(x+
4
3
)
即54x-27y-4=0…(12分)
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查导数的几何意义,正确求导是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+
3x
,求函数f(x)的单调区间及其极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2+bx+c在x=1与x=-
23
时都取得极值.
(Ⅰ)求a,b的值;
(Ⅱ)若x∈[-1,2],都有f(x)-c2<0成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求函数y=
x+3
x2+3
的导数
(2)已知f(x)=x3+4cosx-sin
π
2
,求f'(x)及f′(
π
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=-x3+ax2-4
 (a∈R)
,f′(x)是f(x)的导函数.
(1)当a=2时,求函数f(x)的单调区间;
(2)当a=2时,对任意的m∈[-1,1],n∈[-1,1],求f(m)+f'(n)的最小值;
(3)若?x0∈(0,+∞),使f(x)>0,求a取值范围.

查看答案和解析>>

同步练习册答案