精英家教网 > 高中数学 > 题目详情

【题目】如图,在四边形ABCD中,∠ABC= ,AB:BC=2:3,

(1)求sin∠ACB的值;
(2)若 ,CD=1,求△ACD的面积.

【答案】
(1)解:∵∠ABC= ,AB:BC=2:3, ,可得:AB=

∴在△ABC中,由余弦定理AC2=AB2+BC2﹣2ABBCcos∠ABC,可得:7= +BC2

∴解得:BC=3,AB=2,

∴由正弦定理可得:sin∠ACB= = =


(2)解:∵由(1)及余弦定理可得:

cos∠ACB= = =

∴sin = (cos∠ACB+sin∠ACB)

= + ),

∴SACD= ACCDsin∠ACD= ×( + )=


【解析】(1)在△ABC中,由已知及余弦定理,比例的性质即可解得BC=3,AB=2,由正弦定理即可解得sin∠ACB的值(2)由(1)及余弦定理可求cos∠ACB,利用两角差的正弦函数公式可求sin∠ACD的值,利用三角形面积公式即可计算得解.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1﹣ )元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是(  )
A.a=2b
B.b=2a
C.A=2B
D.B=2A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC的中点为M,GH的中点为N

(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);

(2)证明:直线MN∥平面BDH

(3)求异面直线MNAG所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ln(mx+1)﹣2(m≠0).
(1)讨论f(x)的单调性;
(2)若m>0,g(x)=f(x)+ 存在两个极值点x1 , x2 , 且g(x1)+g(x2)<0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两个分类变量xy,其一组观测值如下面的2×2列联表所示:

y1

y2

x1

a

20a

x2

15a

30a

其中a,15a均为大于5的整数,则a取何值时,在犯错误的概率不超过0.1的前提下认为xy之间有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市在海岛A上建了一水产养殖中心.在海岸线l上有相距70公里的B、C两个小镇,并且AB=30公里,AC=80公里,已知B镇在养殖中心工作的员工有3百人,C镇在养殖中心工作的员工有5百人.现欲在BC之间建一个码头D,运送来自两镇的员工到养殖中心工作,又知水路运输与陆路运输每百人每公里运输成本之比为1:2.

(1)求sin∠ABC的大小;
(2)设∠ADB=θ,试确定θ的大小,使得运输总成本最少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2是椭圆 (0<b<2)的左、右焦点,过F1的直线l交椭圆于A,B两点,若|AF2|+|BF2|最大值为5,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系中椭圆C的方程为ρ2= ,以极点为原点,极轴为x轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(1)若椭圆上任一点坐标为P(x,y),求 的取值范围;
(2)若椭圆的两条弦AB,CD交于点Q,且直线AB与CD的倾斜角互补,求证:|QA||QB|=|QC||QD|.

查看答案和解析>>

同步练习册答案