【题目】如图,在中,点在边上,,,.
(1)求;
(2)若的面积是,求.
【答案】(1)(2)
【解析】
(1)在中对角使用余弦定理求出的值,并判断出的形状,从而得出;
(2)解法1:利用的面积求出,在该三角形中使用余弦定理求出,利用正弦定理求出,最后利用同角三角函数求出;
解法2:作,垂足为点,结合的形状可求出,由的面积求出,并求出,然后利用勾股定理求出,然后在中利用锐角三角函数求出。
(1)在中,因为,,
由余弦定理得,
整理得,
解得.
所以,.
所以,是等边三角形,所以,.
(2)法1:因为,所以.
因为的面积是,
所以,,
所以,.
在中,
=
所以.
在中,由正弦定理得,
易知角为锐角,
法2:作,垂足为,
因为
所以,
因为的面积是,
所以,,
在中,
所以,在中,
科目:高中数学 来源: 题型:
【题目】如图,在等腰三角形ABC中,BA=BC=,,在菱形BCDE中,,AE=.
(1)求证:平面ABC平面AEC;
(2)设直线CE与平面ABE所成的角为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼 让斑马线”行为统计数据:
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路口 9月份的不“礼让斑马线”违章驾驶员人数;
(3)若从表中3、4月份分别抽取4人和2人,然后再从中任选2 人进行交规调查,求抽到的两人恰好来自同一月份的概率.
参考公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张军在网上经营了一家干果店,销售的干果中有松子、开心果、腰果、核桃,价格依次为120元/千克、80元/千克、70元/千克、40元/千克.为了增加销量,张军对以上四种干果进行促销,若一次性购买干果的总价达到150元,顾客就少付x(x∈Z)元,每笔订单顾客在网上支付成功后,张军会得到支付款的80%.
①当x=15时,顾客一次性购买松子和腰果各1千克,需要支付_________________元;
②在促销活动中,为保证张军每笔订单得到的金额均不低于促销的总价的70%,则x的最大值为___________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若,函数在区间上的最大值是,最小值是,求的值;
(2)用定义法证明在其定义域上是减函数;
(3)设, 若对任意,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线与抛物线交于两点,直线与轴交于点,且直线恰好平分.
(1)求的值;
(2)设是直线上一点,直线交抛物线于另一点,直线交直线于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年3月智能共享单车项目正式登陆某市,两种车型“小绿车”、“小黄车”采用分时段计费的方式,“小绿车”每30分钟收费元不足30分钟的部分按30分钟计算;“小黄车”每30分钟收费1元不足30分钟的部分按30分钟计算有甲、乙、丙三人相互独立的到租车点租车骑行各租一车一次设甲、乙、丙不超过30分钟还车的概率分别为,,,三人租车时间都不会超过60分钟甲、乙均租用“小绿车”,丙租用“小黄车”.
求甲、乙两人所付的费用之和等于丙所付的费用的概率;
2设甲、乙、丙三人所付的费用之和为随机变量,求的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com