精英家教网 > 高中数学 > 题目详情

【题目】如图①,在平行四边形中,于点,将沿折起,使,连接,得到如图②所示的几何体.

(1)求证:平面平面

(2)若点在线段上,直线与平面所成角的正切值为,求三棱锥的体积.

【答案】(1)见解析;(2)

【解析】

1)取AC中点M,建系,利用向量证明DMABDMBC即可得出DM⊥平面ABC,故而平面ACD⊥平面ABC;(2)做出直线PD与平面BCD所成角,求出P到平面BCDE的距离,代入体积公式即可.

(1)证明:∵,∴平面

为坐标原点,以所在直线为坐标轴建立空间直角坐标系如图:

,设的中点为,则

,∴

平面平面,∴平面

平面,∴平面平面.

(2)过,垂足为,连接,则,∴平面

为直线与平面所成的角.

,则,故,∴

,解得,即.

,∴.∴

∴三棱锥的体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某初级中学共有学生2000名,各年级男生女生人数如表: 已知在全校学生中随机抽取1名,抽到的是初二年级女生的概率是0.19.

初一年级

初二年级

初三年级

女生

373

x

y

男生

377

370

z

(1)求x的值.

(2)现用分层抽样法在全校抽取48名学生,问应在初三年级学生中抽取多少名?

(3)已知y245,z245,求初三年级女生比男生多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信作为一款社交软件已经在支付,理财,交通,运动等各方面给人的生活带来各种各样的便利.手机微信中的“微信运动”,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数. 先生朋友圈里有大量好友使用了“微信运动”这项功能.他随机选取了其中40名,记录了他们某一天的走路步数,统计数据如下表所示:

(1)以样本估计总体,视样本频率为概率,在先生的微信朋友圈里的男性好友中任意选取3名,其中走路步数不低于6000步的有名,求的分布列和数学期望;

(2)如果某人一天的走路步数不低于8000步,此人将被“微信运动”评定为“运动达人”,否则为“运动鸟人”.根据题意完成下面的列联表,并据此判断能否有90%以上的把握认为“评定类型”

与“性别”有关?

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆()的左、右焦点分别是,点的上顶点,点上,,且.

1)求的方程;

2)已知过原点的直线与椭圆交于两点,垂直于的直线且与椭圆交于两点,若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图1).因其经济又环保,至今还在农业生产中得到使用(如图2).假定在水流量稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.因筒车上盛水筒的运动具有周期性,可以考虑利用三角函数模型刻画盛水筒(视为质点)的运动规律.将筒车抽象为一个几何图形,建立直角坐标系(如图3).设经过t秒后,筒车上的某个盛水筒从点P0运动到点P.由筒车的工作原理可知,这个盛水筒距离水面的高度H(单位: ),由以下量所决定:筒车转轮的中心O到水面的距离h,筒车的半径r,筒车转动的角速度ω(单位: ),盛水筒的初始位置P0以及所经过的时间t(单位: ).已知r=3h=2,筒车每分钟转动(按逆时针方向)1.5圈, P0距离水面的高度为3.5,若盛水筒M从点P0开始计算时间,则至少需要经过_______就可到达最高点;若将点距离水面的高度表示为时间的函数,则此函数表达式为_________

1 2 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片.把每列标号最小的卡片选出,将这些卡片中标号最大的数设为a;把每行标号最大的卡片选出,将这些卡片中标号最小的数设为b.

甲同学认为a有可能比b大,乙同学认为a和b有可能相等.那么甲乙两位同学中说法正确的同学是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某艺术团组织的“微视频展示”活动中,该团体将从微视频的“点赞量”和“专家评分”两个角度来进行评优.若A视频的“点赞量”和“专家评分”中至少有一项高于B视频,则称A视频不亚于B视频.已知共有5部微视频展,如果某微视频不亚于其他4部视频,就称此视频为优秀视频.那么在这5部微视频中,最多可能有_______个优秀视频.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,在圆上任取一点的垂直平分线交于点.(如图).

(1)求点的轨迹方程

(2)若过点的动直线与(1)中的轨迹相交于两点.问:平面内是否存在异于点的定点,使得恒成立?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

同步练习册答案