精英家教网 > 高中数学 > 题目详情

从一批苹果中,随机抽取50个,其重量(单位:g)的频数分布表如下:

分组(重量)
[80,85)
[85,90)
[90,95)
[95,100)
频数(个)
5
10
20
15
 
(1)根据频数分布表计算苹果的重量在[90,95)的频率;
(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有一个的概率.

(1)0.4(2)1(3)0.5

解析试题分析:(1)根据频率公式:,计算可得结果;(2)抽取的概率为 ,重量在[80,85)的个数= (3) 设“抽取的各有一个”为事件A,列举出任取2个共有,共6种情况,符合事件A的有,共3种情况.
(1)重量在的频率=
(2)重量在[80,85)的个数=
(3)由(2)知:在[80,85)抽取1个苹果,在[95,100)抽取3个苹果。
设“抽取的各有一个”为事件A,
设在在[80,85)抽取1个苹果为,在[95,100)抽取3个苹果为
则任取2个共有,共6种情况。
符合事件A的有,共3种情况

考点:频率公式; 分层抽样方法;古典概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:

日期
12月
1日
12月
2日
12月
3日
12月
4日
12月
5日
温差x(℃)
10
11
13
12
8
发芽y(颗)
23
25
30
26
16
 
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,
剩下的2组数据用于回归方程检验.
(1)若选取的是12月1日与12月5日的2组数据,
请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(3)请预测温差为14℃的发芽数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我市某高中的一个综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日   期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
昼夜温差(°C)
10
11
13
12
8
6
就诊人数(个)
22
25
29
26
16
12
 
该综合实践研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
参考数据:
.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;
(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望及方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)一工厂生产甲、乙、丙三种样式的杯子,每种样式均有两种型号,某天的产量如右表(单位:个):按样式分层抽样的方法在这个月生产的杯子中抽取个,其中有甲样式杯子个.

型号
甲样式
乙样式
丙样式








 
(1)求的值; 
(2)用分层抽样的方法在甲样式杯子中抽取一个容量为的样本,从这个样本中任取个杯子,求至少有杯子的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

电视传媒为了解某市100万观众对足球节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众每周平均收看足球节目时间的频率分布直方图,将每周平均收看足球节目时间不低于1.5小时的观众称为“足球迷”,并将其中每周平均收看足球节目时间不低于2.5小时的观众称为“铁杆足球迷”.
(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约为多少人;
(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高元/张,则“足球迷”中非“铁杆足球迷”愿意前往观看的人数会减少,“铁杆足球迷”愿意前往观看的人数会减少.问票价至少定为多少元/张时,才能使前往现场观看足球比赛的人数不超过10万人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种产品的广告费用支出(万元)与销售额(万元)之间有如下的对应数据:


2
4
5
6
8

30
40
60
50
70
x
2
4
5
6
8
y
30
40
60
50
70
 
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为9万元时,销售收入的值.
参考公式:回归直线的方程,其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

以下茎叶图记录了甲,乙两组各三名同学在期末考试中的数学成绩(十位数字为茎,个位数字为叶).乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示.
(1)若甲,乙两个小组的数学平均成绩相同,求的值;
(2)当时,分别从甲,乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值不超过2分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用茎叶图表示这两组数据;.
(2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算);
(3)若从甲、乙两人的5次成绩中各随机抽取一个,求甲的成绩比乙高的概率.

查看答案和解析>>

同步练习册答案