精英家教网 > 高中数学 > 题目详情

【题目】已知集合A﹣{1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=219,则I(a)=129,D(a)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为(  )

A.792
B.693
C.594
D.495

【答案】D
【解析】解:A,如果输出b的值为792,则a=792,
I(a)=279,D(a)=972,b=D(a)﹣I(a)=972﹣279=693,不满足题意.
B,如果输出b的值为693,则a=693,
I(a)=369,D(a)=963,b=D(a)﹣I(a)=963﹣369=594,不满足题意.
C,如果输出b的值为594,则a=594,
I(a)=459,D(a)=954,b=D(a)﹣I(a)=954﹣459=495,不满足题意.
D,如果输出b的值为495,则a=495,
I(a)=459,D(a)=954,b=D(a)﹣I(a)=954﹣459=495,满足题意.
故选:D.

利用验证法判断求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥S﹣ABCD中,SA⊥底面ABCD,∠DAB=∠ABC=90°,SA=AB=BC=a,AD=3a(a>0),E为线段BS上的一个动点.

(1)证明:DE和SC不可能垂直;
(2)当点E为线段BS的三等分点(靠近B)时,求二面角S﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的S为(  )

A.2
B.
C.-
D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是(  )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(1,2,3),B(2,1,2),C(1,1,2),O为坐标原点,点D在直线OC上运动,则当·取最小值时,点D的坐标为(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn+2=2an(n∈N*).
(I)求数列{an}的通项公式;
(Ⅱ)设bn=log2an , 数列{}的前n项和为Tn , 证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在侧棱垂直底面的四棱柱中, , 的中点,是平面与直线的交点.

(1)证明:

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中, 是平行四边形, ,点为棱的中点,点在棱上,且,平面交于点,则异面直线所成角的正切值为__________

【答案】

【解析】

延长的延长线与点Q,连接QEPA于点K,设QA=x

,得,则,所以.

的中点为M,连接EM,则

所以,则,所以AK=.

AD//BC得异面直线所成角即为,

则异面直线所成角的正切值为.

型】填空
束】
17

【题目】在极坐标系中,极点为,已知曲线 与曲线 交于不同的两点

(1)求的值;

(2)求过点且与直线平行的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f1(x)=;f2(x)=(x﹣1);f3(x)=loga(x+),(a>0,a≠1);f4(x)=x(),(x≠0),下面关于这四个函数奇偶性的判断正确的是(  )
A.都是偶函数
B.一个奇函数,一个偶函数,两个非奇非偶函数
C.一个奇函数,两个偶函数,一个非奇非偶函数
D.一个奇函数,三个偶函数

查看答案和解析>>

同步练习册答案