精英家教网 > 高中数学 > 题目详情
15.已知在极坐标系中,直线l的方程为ρ(cosθ-sinθ)=1,圆C的方程为ρ2-4ρcosθ+3=0
(1)试判断直线l与圆C的位置关系;
(2)若直线l与圆ρ2-4ρcosθ+a=0相交所得的弦长为$\sqrt{2}$,求a的值.

分析 (1)利用极坐标与普通方程的互化,然后通过圆心到直线的距离与半径的关系,判断直线与圆的位置关系.
(2)求出圆的普通方程,然后利用圆的半径以及弦心距与半弦长的关系,求解a的值.

解答 解:(1)由ρ(cosθ-sinθ)=1得x-y-1=0------1
由ρ2-4ρcosθ+3=0得x2+y2-4x+3=0,即(x-2)2+y2=1------3
圆心到直线的距离$d=\frac{{\sqrt{2}}}{2}<1$,所以直线与圆相交.------5
(2)由ρ2-4ρcosθ+a=0得x2+y2-4x+a=0即(x-2)2+y2=4-a---7
∵直线l与圆ρ2-4ρcosθ+a=0相交所得的弦长为$\sqrt{2}$,
∴$4-a={(\frac{{\sqrt{2}}}{2})^2}+|\frac{2-0-1}{{\sqrt{2}}}|$,
∴a=3------10

点评 本题考查极坐标与普通方程的互化,考查计算能力以及圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知数列{an}是等比数列,若a1,a3是方程x2-10x+16=0的两根,则a2的值是(  )
A.2B.±2C.4D.±4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点(1,$\frac{1}{3}$)是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}前n项和为Tn,则满足Tn>$\frac{1000}{2015}$的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{2x+3}{3x}$,数列{an}满足a1=1,an+1=f($\frac{1}{{a}_{n}}$),(n∈N*),
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n-1}{a}_{n}}$(n≥2),b1=3,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若幂函数g(x)=(m2-m-1)xm在(0,+∞)上为增函数,则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一袋中装有6个形状大小完全相同的小球,分别标有数字1,2,3,其中编号为3的小球有1个,已知从中一次抽取两球,至少抽到1个编号为1的小球的概率为$\frac{4}{5}$.
(1)求编号为1的小球个数;
(2)若有放回的抽取3次,每次随机抽取3球,求恰有2次抽到编号为3的小球的概率;
(3)从袋中随机抽取3个小球,记球的最大编号为X,求随机变量X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标xOy中,已知曲线C的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}{t^2}\\ y=\frac{1}{4}t\end{array}$(t为参数),曲线与直线l:y=$\frac{1}{2}$x相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\left\{{\begin{array}{l}{2x+3y≤6}\\{x-y≥0}\\{y≥0}\end{array}}$则z=3x-y的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图:
(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
30
捐款不超
过500元
6
合计(图2)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

同步练习册答案