精英家教网 > 高中数学 > 题目详情
17.已知p:2x2-3x-2≤0,q:x2-2(a-1)x+a(a-2)≥0.
(1)当a=1时,若p∧q为真.求实数x的取值范围.
(2)若¬q是¬p的充分不必要条件,求实数a的取值范围.

分析 (1)a=1代入q:分别求出关于p,q的x的范围,取交集即可;(2)问题转化为p是q的充分不必要条件,组成不等式组,解出即可.

解答 解:(1)p:-$\frac{1}{2}$≤x≤2,
a=1时:q:x2-1≥0,解得:x≥1或x≤-1,
若p∧q为真,则p真q真,
∴1≤x≤2;
(2)若¬q是¬p的充分不必要条件,
则p是q的充分不必要条件,
∵q:x2-2(a-1)x+a(a-2)≥0,
∴q:x≥a或x≤a-2,
∴a≤1或a-2≥2即a≥4,
故a的范围是(-∞,1]∪[4,+∞).

点评 本题考查了充分必要条件,考查复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.(理科)已知f(x)=$\frac{a}{{a}^{2}-1}$(ax-a-x) (a>0且a≠1).
(1)判断f(x)的奇偶性.
(2)讨论f(x)单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=sin(2015x+$\frac{π}{6}$)+cos(2015x-$\frac{π}{3}$)的最大值为A,若存在实数x1、x2,使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1-x2|的最小值为(  )
A.$\frac{π}{2015}$B.$\frac{2π}{2015}$C.$\frac{4π}{2015}$D.$\frac{π}{4030}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等差数列{an}中,S3=6,S6-S3=15,S9=45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=log2(1+ax)(a>0且a≠1).
(1)求f(x)的定义域;
(2)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知映射f:A→B,其中A=B=R,对应法则f:x→y=$\left\{{\begin{array}{l}{{x^2}-2x,x≥0}\\{-{x^2}-2x,x<0}\end{array}}$,实数k∈B,且k在集合A中只有一个原象,则k的取值范围是(  )
A.(-∞,-1]∪[1,+∞)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC中,AD:DC=5:9,△ABD的面积为22.5cm2,那么△BDC的面积是多少?△ABC的面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知递增数列{an}满足,a1=1,(an+1-3an)(3an+1-an)=0,n∈N*
(1)求数列{an}的前n项和Sn
(2)在(1)的条件下,证明:$\frac{{n}^{2}}{{S}_{n}}$≤$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线l:x+$\frac{y}{2}$=1与椭圆x2+$\frac{{y}^{2}}{4}$=1交于A,B两点,O为原点,则△OAB的面积为1.

查看答案和解析>>

同步练习册答案