精英家教网 > 高中数学 > 题目详情

如图,三棱柱ABC-A1B1C1的底面是边长为a的正三角形,侧面ABB1A1是菱形且垂直于底面,∠A1AB=60°,M是A1B1的中点.
(1)求证:BM⊥AC;
(2)求二面角B-B1C1-A1的正切值;
(3)求三棱锥M-A1CB的体积.

解:(1)∵侧面ABB1A1是菱形,∠A1AB=60°,M是A1B1的中点,
∴△BA1B1是等边三角形,BM⊥A1B1
再由面ABB1A1垂直于底面,可得BM⊥面 A1B1C1
故BM⊥面ABC,∴BM⊥AC.
(2)作MN⊥B1C1 ,由三垂线定理可得BN⊥B1C1 ,故∠MNB为二面角B-B1C1-A1的平面角.
MN=BMsin60°==,BM=BB1sin60°=
Rt△MNB中,tan∠MNB==2.
所求二面角的正切值是2.
(3)三棱锥M-A1CB的体积 VM-A1CB=VC-A1MB=
而h是点C到面A1BM的距离,即等边三角形ABC的高为
∴三棱锥M-A1CB的体积为 =
分析:(1)根据△BA1B1是等边三角形,BM⊥A1B1 ,面ABB1A1垂直于底面,可得BM⊥面 A1B1C1 ,从而得到BM⊥面ABC,
BM⊥AC.
(2)作MN⊥B1C1 ,证明∠MNB为二面角B-B1C1-A1的平面角,由Rt△MNB中,tan∠MNB=,运算求得结果.
(3)三棱锥M-A1CB的体积 VM-A1CB=VC-A1MB=,把点C到面A1BM的距离h即等边
三角形ABC的高,代入公式运算求得结果.
点评:本题考查证明线线垂直的方法,求二面角的大小的方法,求棱锥的体积,体现了转化的数学思想,找出二面角的平面角并
求出棱锥的高,是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案