精英家教网 > 高中数学 > 题目详情
如图,在四面体ABCD中,若M、N分别是棱AD、BC的中点,AC=BD=6,MN=3
2
,求MN与AC所成的角.
考点:异面直线及其所成的角
专题:空间角
分析:取AB中点O,连结MO,NO,则NO∥AC,ON=
1
2
AC
=3,MO=
1
2
BD=3
,∠MNO是MN与AC所成的角(或所成角的补角),由此能求出MN与AC所成的角.
解答: 解:取AB中点O,连结MO,NO,
∵M、N分别是棱AD、BC的中点,AC=BD=6,MN=3
2

∴NO∥AC,ON=
1
2
AC
=3,MO=
1
2
BD=3

∴∠MNO是MN与AC所成的角(或所成角的补角),
cos∠MNO=
MO2+NO2-MN2
2MO•NO
=
9+9-18
2×3×3
=0,
∴∠MNO=90°,
∴MN与AC所成的角为90°.
点评:本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力.在立体几何中找平行线是解决问题的一个重要技巧,这个技巧就是通过三角形的中位线找平行线,如果试题的已知中涉及到多个中点,则找中点是出现平行线的关键技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,D是AB的中点.
(Ⅰ)求AC1与平面B1BCC1所成角的正切值;
(Ⅱ)求证:AC1∥平面B1DC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心在坐标原点,两焦点分别为双曲线C2
x2
2
-y2=1的顶点,直线x+
2
y=0与椭圆C1交于A、B两点,且点A的坐标为(-
2
,1),点P是椭圆C1上异于点A,B的任意一点,点Q满足
AQ
AP
=0,
BQ
BP
=0,且A,B,Q三点不共线.
(1)求椭圆C1的方程
(2)求点Q的轨迹方程
(3)求△ABQ面积的最大值及此时点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

请编写一个程序,求满足m+n<10的所有正整数对.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某离散型随机变量?分布列如下,则常数k的值为(  )
 ?123n
Pk3k5k(2n-1)k
A、
1
n2
B、
1
n
C、
1
2n-1
D、
1
n(2n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=2,E,F分别是CC1,A1B1的中点.
(1)求证:AE⊥平面BCF;
(2)求点F到平面ABE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
1
m
+
2
n
=1(m>0,n>0),则当m+n取得最小值时,椭圆
x2
m2
+
y2
n2
=1的离心率为(  )
A、
1
2
B、
2
2
C、
3
2
D、
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=4,b=2
3
-2,B=15°,求A、C及c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

和式
10
i=1
(xi-5)
=
 

查看答案和解析>>

同步练习册答案