精英家教网 > 高中数学 > 题目详情
1.下列命题中
①若loga3>logb3,则a>b;
②函数f(x)=x2-2x+3,x∈[0,+∞)的值域为[2,+∞);
③设g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,则函数g(x)无零点;
④函数$h(x)=\frac{{1-{e^{2x}}}}{e^x}$既是奇函数又是减函数.
其中正确的命题有②④.

分析 根据对数函数的图象和性质,可判断①;根据二次函数的图象和性质,可判断②;根据函数零点的定义,可判断③;分析函数的奇偶性和单调性,可判断④.

解答 解:若loga3>logb3>0,则a<b,故①错误;
函数f(x)=x2-2x+3的图象开口朝上,且以直线x=1为对称轴,
当x=1时,函数取最小值2,无最大值,故函数f(x)=x2-2x+3,x∈[0,+∞)的值域为[2,+∞);
故②正确;
g(x)是定义在区间[a,b]上的连续函数.若g(a)=g(b)>0,
则函数g(x)可能存在零点;
故③错误;
数$h(x)=\frac{{1-{e^{2x}}}}{e^x}$满足h(-x)=-h(x),故h(x)为奇函数,
又由$h′(x)=\frac{-{e}^{2x}}{{e}^{x}}$=-ex<0恒成立,故h(x)为减函数
故④正确;
故答案为:②④.

点评 本题以命题的真假判断与应用为载体,考查了对数函数的图象和性质,函数的值域,函数的零点,函数的奇偶性和函数的单调性等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知a,b,c∈R,且a>b>c,则下列不等式一定成立的是(  )
A.$\frac{1}{a}$>$\frac{1}{b}$B.2a-b<1C.$\frac{a}{{c}^{2}+1}$>$\frac{b}{{c}^{2}+1}$D.lg(a-b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知{an}是等差数列,满足a1=1,a4=-5,数列{bn}满足b1=1,b4=21,且{an+bn}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-(a+2)x+alnx,常数a>0
(1)当x=1时,函数f(x)取得极小值-2,求函数f(x)的极大值
(2)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若$\frac{h(x)-g(x)}{{x-{x_0}}}>0$在D内恒成立,则称点P为h(x)的“类优点”,若点(1,f(1))是函数f(x)的“类优点”,
①求函数f(x)在点(1,f(1))处的切线方程
②求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.计算${({\frac{16}{9}})^{-\frac{1}{2}}}+{3^{{{log}_3}\frac{1}{4}}}-lg5+\sqrt{{{({lg2})}^2}-lg4+1}$其结果是(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知矩形ABCD中,AB=2,AD=1,M为CD的中点.如图将△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(Ⅰ)求证:BM⊥平面ADM;
(Ⅱ)若点E是线段DB上的中点,求三棱锥E-ABM的体积V1与四棱锥D-ABCM的体积V2之比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)是y=3x的反函数,则函数f(1)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知动直线y=k(x+1)与椭圆C:x2+3y2=5相交于A、B两点,已知点$M(-\frac{7}{3},0)$,则$\overrightarrow{MA}•\overrightarrow{MB}$的值是(  )
A.$-\frac{9}{4}$B.$\frac{9}{4}$C.$-\frac{4}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.正方体ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案