精英家教网 > 高中数学 > 题目详情
(2010•台州一模)已知二次函数f(x)=ax2+bx+c和“伪二次函数”g(x)=ax2+bx+clnx(a、b、c∈R,abc≠0),
(I)证明:只要a<0,无论b取何值,函数g(x)在定义域内不可能总为增函数;
(Ⅱ)在二次函数f(x)=ax2+bx+c图象上任意取不同两点A(x1,y1),B(x2,y2),线段AB中点的横坐标为x0,记直线AB的斜率为k,(i)求证:k=f′(x0);(ii)对于“伪二次函数”g(x)=ax2+bx+clnx,是否有(i)同样的性质?证明你的结论.
分析:(I)利用导数判断函数的单调性,证明函数g(x)在定义域内不可能总为增函数;
(Ⅱ)根据定义,利用导数的运算求k,并证明“伪二次函数”g(x)=ax2+bx+clnx,是否有(i)同样的性质.
解答:解:(I)函数的定义域为(0,+∞),要使函数g(x)在定义域内总为增函数,
g′(x)=2ax+b+
c
x
=
2ax2+bx+c
x
>0
恒成立,①--------(1分)
当x>0时恒成立,则2ax2+bx+c>0 ②
因为a<0,由二次函数的性质,②不可能恒成立.
则函数g(x)不可能总为增函数.--------(4分)
(II)(i)k=
f(x2)-f(x1)
x2-x1
=
a(
x
2
2
-
x
2
1
)+b(x2-x1)
x2-x1
=a(x2+x1)+b=2ax0+b,--------(6分)
由f'(x)=2ax+b,所以f'(x0)=2ax0+b,…..(7分)  
则k=f′(x0).--------(7分)
(ii)不妨设x2>x1,对于“伪二次函数”:g(x)=ax2+bx+clnx,
k=
g(x2)-g(x1)
x2-x1
=
a(
x
2
2
-
x
2
1
)+b(x2-x1)-cln?
x2
x1
x2-x1
=2ax0+b+
cln
x2
x1
x2-x1
,③--------(9分)
由(ⅰ)中①知g′(x0)=2ax0+b+
c
x0

如果有(ⅰ)的性质,则g'(x0)=k,④,
比较③④两式得
cln
x2
x1
x2-x1
=
c
x0
,c≠0,
即:
ln
x2
x1
x2-x1
=
1
x0
=
x1+x2
2
--------(12分)
不妨令t=
x2
x1
,t>1
,则
lnt
t-1
=
2
t+1
,即lnt=
2t-2
t+1
⑤,
s(t)=lnt-
2t-2
t+1
,则s′(t)=
1
t
-
2(t+1)-(2t-2)
(t+1)2
=
(t-1)2
t(t+1)2
>0

∴s(t)在(1,+∞)上递增,∴s(t)>s(1)=0.
∴⑤式不可能成立,④式不可能成立,即g'(x0)≠k.--------(14分)
∴“伪二次函数”g(x)=ax2+bx+clnx,不具有(ⅰ)的性质.--------(15分)
点评:本题主要考查了利用导数研究函数的性质,综合性较强,运算量较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•台州一模)已知集合A={x|x<3} B={1,2,3,4},则(?RA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)设m为直线,α,β,γ为三个不同的平面,下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)在实数等比数列{an}中,a2+a6=34,a3a5=64,则a4=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)设F1,F2分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,已知点P(
a2
c
3
b
)(其中c为椭圆的半焦距),若线段PF1的中垂线恰好过点F2,则椭圆离心率的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州一模)某电子科技公司遇到一个技术性难题,决定成立甲、乙两个攻关小组,按要求各自独立进行为期一个月的技术攻关,同时决定对攻关限期内攻克技术难题的小组给予奖励.已知此技术难题在攻关期限内被甲小组攻克的概率为
2
3
,被乙小组攻克的概率为
3
4

(1)设ξ为攻关期满时获奖的攻关小组数,求ξ的分布列及数学期望Eξ;
(2)设η为攻关期满时获奖的攻关小组数与没有获奖的攻关小组数之差的平方,记“函数f(x)=|η-
1
2
|x
在定义域内单调递增”为事件C,求事件C发生的概率.

查看答案和解析>>

同步练习册答案