【题目】函数 (ω>0)的图象与x轴正半轴交点的横坐标构成一个公差为 的等差数列,若要得到函数g(x)=Asinωx的图象,只要将f(x)的图象( )个单位.
A.向左平移
B.向右平移
C.向左平移
D.向右平移
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 设方程f(x)=2﹣x+b(b∈R)的四个实根从小到大依次为x1 , x2 , x3 , x4 , 对于满足条件的任意一组实根,下列判断中一定成立的是( )
A.x1+x2=2
B.e2<x3x4<(2e﹣1)2
C.0<(2e﹣x3)(2e﹣x4)<1
D.1<x1x2<e2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l的普通方程为x﹣y﹣2=0,曲线C的参数方程为 (θ为参数),设直线l与曲线C交于A,B两点.若点P在曲线C上运动,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}是各项均为正数的等比数列,其前n项和为Sn , 且a1a5=64,S5﹣S3=48.
(1)求数列{an}的通项公式;
(2)设有正整数m,l(5<m<l),使得am , 5a5 , al成等差数列,求m,l的值;
(3)设k,m,l∈N*,k<m<1,对于给定的k,求三个数 5ak , am , al经适当排序后能构成等差数列的充要条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,侧面ADD1A1⊥底面ABCD,D1A=D1D= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:A1O∥平面AB1C;
(Ⅱ)求锐二面角A﹣C1D1﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,角A,B,C所对的边分别为a,b,c,且3bsinA=c,D为AC边上一点.
(1)若D是AC的中点,且 , ,求△ABC的最短边的边长.
(2)若c=2b=4,S△BCD= ,求DC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在区间[﹣3,3]上的单调函数f(x)满足:对任意的x∈[﹣3,3],都有f(f(x)﹣2x)=6,则在[﹣3,3]上随机取一个实数x,使得f(x)的值不小于4的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C 的参数方程为 (α为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C 的极坐标方程;
(Ⅱ)设l1:θ= ,l2:θ= ,若l 1、l2与曲线C 相交于异于原点的两点 A、B,求△AOB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学人力资源部计划2016年招聘2名数学教师,共5名应聘者进入最后课堂实录环节.5名数学组评审专家给出评分如表:
评审专家/应聘老师 | 1 | 2 | 3 | 4 | 5 |
评审专家A | 93.0 | 90.0 | 88.5 | 89.5 | 82.5 |
评审专家B | 94.0 | 83.0 | 89.0 | 93.0 | 81.0 |
评审专家C | 91.0 | 85.0 | 81.5 | 88.0 | 81.0 |
评审专家D | 92.0 | 91.5 | 81.0 | 94.5 | 87.0 |
评审专家E | 95.5 | 91.0 | 90.0 | 95.5 | 88.5 |
(Ⅰ)若依据去掉一个最高分和一个最低分规则计算应聘老师成绩,试确定最终应聘成功的2名数学老师的序号;
(Ⅱ)在课堂实录环节,每名应聘老师都需要从5名评审专家中随机选取2名进行点评,且每名应聘老师的选择互不影响,设X表示评审专家A进行点评的次数,求X的分布列以及数学期望;
(Ⅲ)记评审专家A与评审专家B给出的评分的方差分别为 ,试比较 与 的大小.(只需写出结论)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com