精英家教网 > 高中数学 > 题目详情
4、设α、β为两个不同的平面,直线l?α,则“l⊥β”是“α⊥β”成立的(  )
分析:面面平行的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.根据题意由判断定理得l⊥β?α⊥β.若α⊥β,直线l?α则直线l⊥β,或直线l∥β,或直线l与平面β相交,或直线l在平面β内.由α⊥β,直线l?α得不到l⊥β,所以所以“l⊥β”是“α⊥β”成立的充分不必要条件.
解答:解:面面平行的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.
因为直线l?α,且l⊥β
所以由判断定理得α⊥β.
所以直线l?α,且l⊥β?α⊥β
若α⊥β,直线l?α则直线l⊥β,或直线l∥β,或直线l与平面β相交,或直线l在平面β内.
所以“l⊥β”是“α⊥β”成立的充分不必要条件.
故答案为充分不必要.
点评:解决此类问题的关键是判断充要条件可以先判断命题的真假,最好用?来表示,再转换为是什么样的命题,最后转化是什么样的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、设a、b为两条不同的直线,α、β为两个不同的平面.下列命题中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设l,m,n为三条不同的直线,α,β为两个不同的平面,下列命题中正确的个数是(  )
(1)若l∥m,m∥n,l⊥α,则n⊥α;          
(2)若m∥β,α⊥β,l⊥α,则l⊥m;
(3)若m?α,n?α,l⊥m,l⊥n,则l⊥α;    
(4)若l∥m,m⊥α,n⊥α,则l⊥n.

查看答案和解析>>

科目:高中数学 来源: 题型:

设l,m为两条不同的直线,α,β为两个不同的平面,下列命题中正确的是
②④
②④
.(填序号)
①若l⊥α,m∥β,α⊥β,则l⊥m;
②若l∥m,m⊥α,l⊥β,则α∥β;
③若l∥α,m∥β,α∥β,则l∥m;
④若α⊥β,α∩β=m,l?β,l⊥m,则l⊥α.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α、β为两个不同的平面,m、n为两条不同的直线,且m?α,n?β,有如下的两个命题:p:若α∥β,则m∥n;q:若m⊥n,则α⊥β.那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面内,设A,B为两个不同的定点,动点P满足:
PA
PB
=k2
(k为实常数),则动点P的轨迹为(  )
A、圆B、椭圆C、双曲线D、不确定

查看答案和解析>>

同步练习册答案