求由抛物线与直线及所围成图形的面积.
【解析】首先利用已知函数和抛物线作图,然后确定交点坐标,然后利用定积分表示出面积为,所以得到,由此得到结论为
解:设所求图形面积为,则
=.即所求图形面积为.
科目:高中数学 来源: 题型:
已知A(-1,2)为抛物线C:y=2x2上的点,直线l1过点A且与抛物线C相切,直线l2:x=a(a<-1)交抛物线C 于点B,交直线l1于点D.
(1)求直线l1的方程;
(2)求△ABD的面积S1;
(3)求由抛物线C及直线l1和直线l2所围成的图形面积S2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com