精英家教网 > 高中数学 > 题目详情

设函数f(x)=ln xx2-(a+1)x(a>0,a为常数).
(1)讨论f(x)的单调性;
(2)若a=1,证明:当x>1时,f(x)< x2.

(1) 在,(1,+∞)上单调递增,在上单调递减(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;
(2)判断函数f(x)的单调性;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时都取得极值.
(1)求的值及的极大值与极小值;
(2)若方程有三个互异的实根,求的取值范围;
(3)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)利用(2)的结论证明:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的函数同时满足以下条件:
在(0,1)上是减函数,在(1,+∞)上是增函数;
是偶函数;
在x=0处的切线与直线y=x+2垂直.
(1)求函数的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使g(x)<,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x=3是函数f(x)=aln(1+x)+x2-10x的一个极值点.
(1)求a
(2)求函数f(x)的单调区间;
(3)若直线yb与函数yf(x)的图象有3个交点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(1)若,求曲线处的切线方程;
(2)若对任意的,都有恒成立,求的最小值;
(3)设,若为曲线的两个不同点,满足,且,使得曲线处的切线与直线AB平行,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3x2+6xa.
(1)对于任意实数xf′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的单调区间;
(2)当时,若恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案