精英家教网 > 高中数学 > 题目详情
设f(x),g(x)分别是定义在(-∞,0)∪(0,+∞)上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0.且g(-3)=0.则不等式f(x)g(x)<0的解集是(  )
A、(-3,0)∪(3,+∞)
B、(-3,0)∪(0,3)
C、(-∞,-3)∪(3,+∞)
D、(-∞,-3)∪(0,3)
考点:利用导数研究函数的单调性,函数单调性的性质
专题:计算题,函数的性质及应用,导数的综合应用
分析:令F(x)=f(x)g(x),由条件可得F(x)为奇函数,由导数的乘法运算法则,有(f(x)g(x))′>0,即有x<0时,函数F(x)递增,则有x>0时,函数F(x)递增.求出F(-3)=F(3)=0,讨论x>0,x<0,应用单调性即可得到所求的解集.
解答: 解:令F(x)=f(x)g(x),
由于f(x),g(x)分别是定义
在(-∞,0)∪(0,+∞)上的奇函数和偶函数,
则f(-x)=-f(x),g(-x)=g(x),
由F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),
则F(x)为奇函数,
由于当x<0时,f′(x)g(x)+f(x)g′(x)>0,
即有(f(x)g(x))′>0,
即有x<0时,函数F(x)递增,则有x>0时,函数F(x)递增.
由于g(-3)=0,则F(-3)=F(3)=0,
不等式f(x)g(x)<0即为F(x)<0,
若x>0,则F(x)<F(3),即得0<x<3;
若x<0,则F(x)<F(-3),即得x<-3.
故原不等式的解集为(0,3)∪(-∞,-3).
故选D.
点评:本题考查函数的奇偶性、单调性和应用,考查导数的运算法则的逆用,函数的单调性与导数的符号之间的关系,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={a1,a2,a3,a4},集合B={b1,b2,b3,b4,b5},则从A到B的子集建立的映射中,构成一一映射的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知bn>0(n∈N+),且a1=b1=1,a2+b3=a3,S5=5(T3+b2).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求和:
b2
T1T2
+
b3
T2T3
+…+
bn+1
TnTn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的四个顶点都在半径为
3
的球面上,M,N分别为PA,AB的中点.若MN⊥CM,则球心到平面ABC的距离为(  )
A、
3
B、
2
3
3
C、
3
3
D、
3
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,两个焦点分别为F1(-1,0),F2(1,0).
(1)求椭圆C的方程;
(2)过点F2(1,0)的直线l交椭圆C于M,N两点,设点N关于x轴的对称点为Q(M、Q不重合),求证:直线MQ过x轴上一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系下,点A,B分别为x轴和y轴上的两个动点,满足|AB|=10,点M为线段AB的中点,已知点P(10,0),则
1
2
|PM|+|AM|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的直观图及三视图如图所示,M,N分别是AF,BC的中点.

(Ⅰ)写出这个几何体的名称;
(Ⅱ)求证:MN∥平面CDEF;
(Ⅲ)求多面体A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠A=60°,∠A的平分线交BC于D,若AB=4,且
AD
=
1
4
AC
+
λ
AB
(λ∈R),则AD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,且满足f(x+2)=-f(x).若f(x)为奇函数,且当0≤x≤1时,f(x)=
1
2
x,求使f(x)=-
1
2
在[0,2 014]上的所有x的个数.

查看答案和解析>>

同步练习册答案