精英家教网 > 高中数学 > 题目详情

【题目】函数y=ax2+1(a>0且a≠1)的图象必经过点(
A.(0,1)
B.(1,1)
C.(2,0)
D.(2,2)

【答案】D
【解析】解:∵当X=2时
y=ax2+1=2恒成立
故函数y=ax2+1(a>0且a≠1)的图象必经过点(2,2)
故选D
【考点精析】本题主要考查了指数函数的单调性与特殊点的相关知识点,需要掌握0<a<1时:在定义域上是单调减函数;a>1时:在定义域上是单调增函数才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派出一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场),由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中率只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.
(1)定义事件A为“一班第三位同学没能出场罚球”,求事件A发生的概率;
(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一点球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某队队员射入点球且另一队队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛.若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方用过抽签决定胜负,以随机变量X记录双方进行一对一点球决胜的轮数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的是( ) ①圆的平行射影可以是椭圆,但椭圆的平行射影不可能是圆;②平行四边形的平行射影仍然是平行四边形;③两条平行线段之比等于它们的平行射影(不是点)之比;④圆柱与平面的截面可以看作是底面的平行射影,反之亦然.
A.①②
B.②③
C.③④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P是正方体ABCD﹣A1B1C1D1的对角面BDD1B1(含边界)内的点,若点P到平面ABC、平面ABA1、平面ADA1的距离相等,则符合条件的点P(
A.仅有一个
B.有有限多个
C.有无限多个
D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U={1,2,3,4,5},集合M={1,2,4},则集合UM=(
A.{1,2,4}
B.{3,4,5}
C.{2,5}
D.{3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是(
A.p∧q
B.¬p∧¬q
C.¬p∧q
D.p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人射击一次,设事件A:“中靶”;事件B:“击中环数大于5”;事件C:“击中环数大于1且小于6”;事件D:“击中环数大于0且小于6”,则正确的关系是(
A.B与C为互斥事件
B.B与C为对立事件
C.A与D为互斥事件
D.A与D为对立事件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知2sinAcosB=sinC,那么△ABC一定是(
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.正三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U={2,4,3﹣a2},P={2,a2﹣a+2},UP={﹣1},则a=

查看答案和解析>>

同步练习册答案