精英家教网 > 高中数学 > 题目详情
4.已知双曲线的中心是原点,焦点到渐近线的距离为2,一条准线方程为y=-3,则其渐近线方程为y=±$\sqrt{3}$x.

分析 双曲线的焦点在y轴上,且$\frac{{a}^{2}}{c}$=3,焦点到渐近线距离为2,求出a,b,c,即可求出双曲线的渐近线方程.

解答 解:∵一条准线方程为y=-3,
∴双曲线的焦点在y轴上,且$\frac{{a}^{2}}{c}$=3,
∵焦点到渐近线的距离为2,
∴$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}$=2,
∴b=2,
∴a=2$\sqrt{3}$,c=4
∴渐近线方程为y=±$\frac{a}{b}$x=±$\sqrt{3}$x.
故答案为:y=±$\sqrt{3}$x.

点评 本题考查了双曲线的标准方程及其渐近线方程、点到直线的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=sinωx(ω>0),将f(x)的图象向左平移$\frac{π}{3}$个单位从长度后,所得图象与原函数的图象重合,则ω的最小值为(  )
A.$\frac{1}{3}$B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的偶函数f(x)在[0,+∞)上的增函数,若f(1)=0,则f(log2x)>0的解集是(0,$\frac{1}{2}$)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某化工厂有8种产品,由于安全原因,有些产品不允许存放在同一仓库.具体情况由下表给出(“╳”表示该两种产品不能存放在同一仓库)
12345678
1-
2-
3-
4-
5-
6-
7-
8-
则该厂至少需要几个产品仓库来存放这8种产品?(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在等腰梯形ABCD中,$AB=\frac{1}{2}CD$,E,F分别是底边AB,CD的中点,把四边形BEFC沿直线EF折起,使得面BEFC⊥面ADFE,若动点P∈平面ADFE,设PB,PC与平面ADFE所成的角分别为θ1,θ2(θ1,θ2均不为0).若θ12,则动点P的轨迹为(  )
A.直线B.椭圆C.D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若变量x,y满足约束条件$\left\{\begin{array}{l}x+y≤2\\ x≥1\\ y≥0\end{array}\right.$,则z=2x+y的最大值为(  )
A.0B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中为偶函数的是(  )
A.y=x2cosxB.y=x2sinxC.y=2-xD.y=|lnx|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.双曲线C:$\frac{x^2}{16}-\frac{y^2}{4}=1$的渐近线方程为$y=±\frac{1}{2}x$;设F1,F2为双曲线C的左、右焦点,P为C上一点,且|PF1|=4,则|PF2|=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某市大型国有企业按照中央“调结构、保增长、促发展”的指示精神,计划投资甲乙两个项目,前期调研获悉,甲项目每投资百万元需要配套电能2万千瓦,增加产值200万元;乙项目每投资百万元需要配套电能4万千瓦,增加产值300万元,根据该企业目前资金储备状况仅能最多投资3000万元,配套电能100万千瓦.
(Ⅰ)假设企业在甲、乙两个项目投资额分别为x,y(单位:百万元),请写出x,y所满足的约束条件,并在所给出的坐标系画出可行域;
(Ⅱ)计算如何安排对甲、乙两个项目投资额,才能使产值有最大的增加值.

查看答案和解析>>

同步练习册答案