精英家教网 > 高中数学 > 题目详情
13.代数式$(\sqrt{x}+2){(\frac{1}{{\sqrt{x}}}-1)^5}$的展开式中,常数项是(  )
A.-7B.-3C.3D.7

分析 把所给的式子中的${(\frac{1}{\sqrt{x}}-1)}^{5}$利用二项式定理展开,可得展开式中的常数项.

解答 解:代数式$(\sqrt{x}+2){(\frac{1}{{\sqrt{x}}}-1)^5}$=($\sqrt{x}$+2)•(${(\frac{1}{\sqrt{x}})}^{5}$-${C}_{5}^{1}$•${(\frac{1}{\sqrt{x}})}^{4}$+${C}_{5}^{2}$•${(\frac{1}{\sqrt{x}})}^{3}$-${C}_{5}^{3}$•${(\frac{1}{\sqrt{x}})}^{2}$+${C}_{5}^{4}$•$\frac{1}{\sqrt{x}}$-1),
∴展开式中常数项是${C}_{5}^{4}$-2=3,
故选:C.

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A、B,使得曲线y=f(x)在点A、B处的切线互相垂直,则实数a的取值范围为(  )
A.$[-\frac{1}{2},\frac{1}{2}]$B.$[-\sqrt{2},\sqrt{2}]$C.$(-∞,-\sqrt{2})∪(\sqrt{2},+∞)$D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为得到函数y=sin2x-cos2x的图象,可由函数y=$\sqrt{2}$sin2x的图象(  )
A.向左平移$\frac{π}{8}$个单位B.向右平移$\frac{π}{8}$个单位
C.向左平移$\frac{π}{4}$个单位D.向右平移$\frac{π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\frac{1}{x}$•cosx,则f(π)+f′($\frac{π}{2}$)=(  )
A.0B.$\frac{3}{π}$C.$\frac{2}{π}$D.-$\frac{3}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在实数t,使得f(t+2)=f(t)+f(2).
(1)判断f(x)=3x+2是否属于集合M,并说明理由;
(2)若$f(x)=lg\frac{a}{{{x^2}+2}}$属于集合M,求实数a的取值范围;
(3)若f(x)=2x+bx2,求证:对任意实数b,都有f(x)∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.历年气象统计表明:某地区一天下雨的概率是$\frac{1}{3}$,连续两天下雨的概率是$\frac{1}{5}$.已知该地区某天下雨,则随后一天也下雨的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抽取以下两个样本:①从二(1)班数学成绩最好的10名学生中选出2人代表班级参加数学竞赛;②从学校1000名高二学生中选出50名代表参加某项社会实践活动.下列说法正确的是(  )
A.①、②都适合用简单随机抽样方法
B.①、②都适合用系统抽样方法
C.①适合用简单随机抽样方法,②适合用系统抽样方法
D.①适合用系统抽样方法,②适合用简单随机抽样方法

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面MQB⊥平面PAD;
(2)若二面角M-BQ-C大小的为60°,求QM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC中,a,b,c分别为角A,B,C的对边,csinC-asinA=($\sqrt{3}$c-b)sinB.
(Ⅰ)求角A;
(Ⅱ)若a=1,求三角形ABC面积S的最大值.

查看答案和解析>>

同步练习册答案