已知偶函数满足:当时,,当时,.
(1)求当时,的表达式;
(2)试讨论:当实数满足什么条件时,函数有4个零点,且这4个零点从小到大依次构成等差数列.
(1);(2)①时,;②时,;③时,.
【解析】
试题分析:本题考查函数的奇偶性、函数解析式、函数零点问题以及等差数列的定义,考查化归与转化思想,考查计算能力.第一问,先把转化成,利用已知时的解析式,利用偶函数转化解析式;第二问,把有4个零点,先转化为与有4个交点且均匀分布,所以利用等差中项,偶函数等基础知识列出表达式,分情况进行讨论分析.
试题解析:(1)设则,,
又偶函数,
所以,.
(2)零点,与交点有4个且均匀分布,
(Ⅰ)时, 得,
所以时, ,
(Ⅱ)且时 ,, ,
所以 时,,
(Ⅲ)时时,符合题意,
(Ⅳ)时,,,,,
此时,,所以或(舍)
且时,时存在.
综上,①时,;
②时,;
③时,符合题意.
考点:1.求函数解析式;2.函数零点问题;3.图像交点问题.
科目:高中数学 来源:2013-2014学年安徽池州第一中学高三上学期第三次月考文科数学试卷(解析版) 题型:解答题
已知偶函数满足:当时,,当时,.
(Ⅰ)求表达式;
(Ⅱ)若直线与函数的图像恰有两个公共点,求实数的取值范围;
(Ⅲ)试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)
查看答案和解析>>
科目:高中数学 来源:2012-2013学年河北省高三第一次调研考试理科数学试卷(解析版) 题型:解答题
已知偶函数满足:当时,,
当时,
(1) 求当时,的表达式;
(2) 试讨论:当实数满足什么条件时,函数有4个零点,
且这4个零点从小到大依次构成等差数列.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期第三次月考理科数学卷 题型:解答题
(本题满分15分)
已知偶函数满足:当时,,当时,
(1) 求当时,的表达式;
(2) 若直线与函数的图象恰好有两个公共点,求实数的取值范围。
(3) 试讨论当实数满足什么条件时,函数有4个零点且这4个零点从小到大依次成等差数列。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三上学期第三次月考考试数学理卷 题型:解答题
(本题满分15分)
已知偶函数满足:当时,,当时,
(1) 求当时,的表达式;
(2) 若直线与函数的图象恰好有两个公共点,求实数的取值范围。
(3) 试讨论当实数满足什么条件时,函数有4个零点且这4个零点从小到大依次成等差数列。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com