精英家教网 > 高中数学 > 题目详情

如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC 把△BAC沿AC折起到△PAC的位置,使得点P在平面ADC上的正投影O恰好落在线段AC上,如图2所示,点E,F分别为线段PC,CD的中点.
(I) 求证:平面OEF∥平面APD;
(II)求直线CD⊥与平面POF
(III)在棱PC上是否存在一点M,使得M到点P,O,C,F四点的距离相等?请说明理由.

解:(I)∵点P在平面ADC上的正投影O恰好落在线段AC上,
∴PO⊥平面ABC,
∴PO⊥AC.
∵AB=BC,
∴O是AC的 中点,
∴OE∥PA.
同理OF∥AD.
又OE∩OF=O,PA∩AD=A,
∴平面OEF∥平面PDA.
(II)∵OF∥AD,AD⊥CD,
∴OF⊥CD,
又PO⊥平面ADC,CD?平面ADC,
∴PO⊥CD,
又OF∩PO=O,
∴CD⊥平面POF.
(III)存在,事实上记点E为M即可,
∵CD⊥平面POF,PF?平面POF,
∴CD⊥PF,
又M为PC中点,∴EF=
同理,在直角三角形POC中,EP=EC=OE=
∴点E到四个点P,O,C,F的距离相等.
分析:(Ⅰ)利用面面垂直的性质定理可得PO⊥平面ABC,再利用等腰三角形的性质可得O是AC的 中点,利用三角形的中位线定理即可得出OE∥PA,OF∥AD,再利用面面平行的判定定理即可证明;
(Ⅱ)线线平行的性质可得OF⊥CD,利用线面垂直的性质定理可得PO⊥CD,再利用线面垂直的判定定理即可证明;
(Ⅲ)利用线面垂直的性质定理可得CD⊥PF,再利用直角三角形的斜边上中线的性质即可证明.
点评:熟练掌握面面垂直的性质定理、等腰三角形的性质、三角形的中位线定理、面面平行的判定定理、线线平行的性质、线面垂直的判定与性质定理、直角三角形的斜边上中线的性质是解题的关键..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)求证:BC⊥平面ACD;
(Ⅱ)求二面角A-CD-M的余弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)如图1,在直角梯形ABCD中,已知AD∥BC,AD=AB=1,∠BAD=90°,∠BCD=45°,AE⊥BD.将△ABD沿对角线BD折起(图2),记折起后点A的位置为P且使平面PBD⊥平面BCD.
(1)求三棱锥P-BCD的体积;
(2)求平面PBC与平面PCD所成二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区二模)如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=2,AD=4.把△DAC沿对角线AC折起到△PAC的位置,如图2所示,使得点P在平面ABC上的正投影H恰好落在线段AC上,连接PB,点E,F分别为线段PA,PB的中点.
(Ⅰ)求证:平面EFH∥平面PBC;
(Ⅱ)求直线HE与平面PHB所成角的正弦值;
(Ⅲ)在棱PA上是否存在一点M,使得M到P,H,A,F四点的距离相等?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•韶关二模)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=
12
AB=2
,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(1)求证:DA⊥BC;
(2)在CD上找一点F,使AD∥平面EFB;
(3)求点A到平面BCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图1,在直角梯形ABCD中,AB∥CD,∠A=90°,AB=2,CD=6,AD=3,E为CD上一点,且DE=4,过E作EF∥AD交BC于F现将△CEF沿EF折起到△PEF,使∠PED=60°,如图2.
(Ⅰ)求证:PE⊥平面ADP;
(Ⅱ)求异面直线BD与PF所成角的余弦值;
(Ⅲ)在线段PF上是否存在一点M,使DM与平在ADP所成的角为30°?若存在,确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案