精英家教网 > 高中数学 > 题目详情

【题目】在棱长为2的正方体中,分别为棱的中点,为棱上的一点,且,设点的中点,则点到平面的距离为( )

A. B. C. D.

【答案】D

【解析】

D为原点,DAx轴,DCy轴,DD1z轴,建立空间直角坐标系,利用向量法能求出点M到平面D1EF的距离,N到面的距离是M到该面距离的一半.

解:以D为原点,DAx轴,DCy轴,DD1z轴,建立空间直角坐标系,

M2λ2),D1002),E201),F221),

=(﹣201),=(020),=(0λ1),

设平面D1EF的法向量=(xyz),

,取x1,得=(102),

∴点M到平面D1EF的距离为:

dNEM中点,所以N到该面的距离为 ,选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数e是自然对数的底数,)存在唯一的零点,则实数a的取值范围为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在实数,对任意实数,使不等式恒成立,则实数的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校进行社会实践,对岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在岁, 岁年龄段人数中,“时尚族”人数分别占本组人数的.

(1)求岁与岁年龄段“时尚族”的人数;

(2)从岁和岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在岁内的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

1)求直线的普通方程及曲线的直角坐标方程;

2)设直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次田径比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示。

若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取5人,则其中成绩在区间上的运动员人数为

A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据统计,某蔬菜基地西红柿亩产量的增加量(百千克)与某种液体肥料每亩使用量(千克)之间的对应数据的散点图,如图所示.

(1)依据数据的散点图可以看出,可用线性回归模型拟合的关系,请计算相关系数并加以说明(若,则线性相关程度很高,可用线性回归模型拟合);

(2)求关于的回归方程,并预测液体肥料每亩使用量为12千克时,西红柿亩产量的增加量约为多少?

附:相关系数公式,参考数据:.

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班共有名学生,已知以下信息:

①男生共有人;

②女团员共有人;

③住校的女生共有人;

④不住校的团员共有人;

⑤住校的男团员共有人;

⑥男生中非团员且不住校的共有人;

⑦女生中非团员且不住校的共有人.

根据以上信息,该班住校生共有______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,求证:

(Ⅱ)如果恒成立,求实数的最小值.

查看答案和解析>>

同步练习册答案