精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C)的左右焦点分别为,过焦点的一条直线交椭圆于PQ两点,若的周长为,且长轴长与短轴长之比为

1)求出椭圆的方程;

2)若,求出弦长的值;

3)若,求出直线的方程.

【答案】(1);(2);(3)

【解析】

1)根据焦点三角形周长、长短轴之比和可构造方程组求得,进而得到椭圆方程;

2)设,由焦点三角形面积可构造方程求得点坐标,由此得到直线方程,与椭圆方程联立求得点坐标,由两点间距离公式求得

3)设直线的方程为:,与椭圆方程联立得到韦达定理的形式;由平面向量线性运算可化简已知等式为,由此得到,结合韦达定理构造方程求得,进而得到直线方程.

1)由周长得:,即

由长轴长与短轴长之比为得:

,可解得:

椭圆的方程为

2)设,则

,又

,即

时,直线方程为,与椭圆方程联立得:

由椭圆对称性知,当时,

综上所述:

3)设直线的方程为:

,即

得:

即:,解得:

直线的方程为:

即直线的方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=(x2aexaR).

1)若函数fx)有两个不同的极值点,求实数a的取值范围;

2)当a0时,若关于x的方程fx)=m存在三个不同的实数根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

喜欢甜品

不喜欢甜品

合计

南方学生

60

20

80

北方学生

10

10

20

合计

70

30

100

根据表中数据,问是否有的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;

已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了纪念“一带一路”倡议提出五周年,某城市举办了一场知识竞赛,为了了解市民对“一带一路”知识的掌握情况,从回收的有效答卷中按青年组和老年组各随机抽取了40份答卷,发现成绩都在内,现将成绩按区间,,,进行分组,绘制成如下的频率分布直方图.

青年组

中老年组

(1)利用直方图估计青年组的中位数和老年组的平均数;

(2)从青年组,的分数段中,按分层抽样的方法随机抽取5份答卷,再从中选出3份答卷对应的市民参加政府组织的座谈会,求选出的3位市民中有2位来自分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高考改革是教育体制改革中的重点领域和关键环节,全社会极其关注.近年来,在新高考改革中,打破文理分科的“”模式初露端倪.其中“”指必考科目语文、数学、外语,“”指考生根据本人兴趣特长和拟报考学校及专业的要求,从物理、化学、生物、历史、政治、地理六科中选择门作为选考科目,其中语、数、外三门课各占分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.假定省规定:选考科目按考生成绩从高到低排列,按照占总体的,以此赋分分、分、分、分.为了让学生们体验“赋分制”计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单科全班排名,每名学生选三科计算成绩),已知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如下图所示,小明同学在这次考试中物理分,化学多分.

(1)求小明物理成绩的最后得分;

(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;

(3)若小明必选物理,其他两科在剩下的五科中任选,求小明此次考试选考科目包括化学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,向量是与向量夹角为的单位向量.

1)求向量

2)若向量与向量共线,且的夹角为钝角,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一列非零向量满足:.

1)写出数列的通项公式;

2)求出向量的夹角,并将中所有与平行的向量取出来,按原来的顺序排成一列,组成新的数列为坐标原点,求点列的坐标;

3)令),求的极限点位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是圆上的任意一点,是过点且与轴垂直的直线,是直线轴的交点,点在直线上,且满足.当点在圆上运动时,记点的轨迹为曲线.

(1)求曲线的方程;

(2)已知点,过的直线交曲线两点,交直线于点.判定直线的斜率是否依次构成等差数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

1)若,函数的极大值为,求实数的值;

2)若对任意的 ,在上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案