精英家教网 > 高中数学 > 题目详情
如图所示,正方体ABCD-A1B1C1D1中,A1C与截面DBC1交于O点,AC,BD交于M点,求证:C1,O,M三点共线.
见解析
证明:∵C1∈平面A1ACC1,且C1∈平面DBC1
∴C1是平面A1ACC1与平面DBC1的公共点.
又∵M∈AC,∴M∈平面A1ACC1.
∵M∈BD,∴M∈平面DBC1
∴M也是平面A1ACC1与平面DBC1的公共点,
∴C1M是平面A1ACC1与平面DBC1的交线.
∵O为 A1C与截面DBC1的交点,
∴O∈平面A1ACC1,O∈平面DBC1
即O也是两平面的公共点,
∴O∈直线C1M,即C1,O,M三点共线.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•湖北)如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为3,点E在侧棱AA1上,点F在侧棱BB1上,且AE=2,BF=

(I) 求证:CF⊥C1E;
(II) 求二面角E﹣CF﹣C1的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是线段AE上的动点.
(Ⅰ)试确定点M的位置,使AC平面DMF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长为4的正四面体A-BCD中,M是BC的中点,点P在线段AM上运动(P不与A,M重合),过点P作直线l⊥平面ABC,l与平面BCD交于点Q,给出下列命题:①BC⊥平面AMD;②Q点一定在直线DM上;③VC-AMD=4.

其中正确命题的序号是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于平面M与平面N,有下列条件:①M,N都垂直于平面Q;②M、N都平行于平面Q;③M内不共线的三点到N的距离相等;④l,m为两条平行直线,且l∥M,m∥N;⑤l,m是异面直线,且l∥M,m∥M;l∥N,m∥N,则可判定平面M与平面N平行的条件是________(填正确结论的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n表示不同直线,α、β表示不同平面,则下列结论中正确的是(  )
A.若m∥α,m∥n,则n∥α
B.若m?α,n?β,m∥β,n∥α,则α∥β
C.若α∥β,m∥α,m∥n,则n∥β
D.若α∥β,m∥α,n∥m,n?β,则n∥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是(  )
A.EH∥FG
B.四边形EFGH是矩形
C.Ω是棱柱
D.Ω是棱台

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,则(   )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四棱柱ABCDA1B1C1D1中,AA1=2AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案