精英家教网 > 高中数学 > 题目详情

【题目】一袋中有大小、形状相同的2个白球和10个黑球,从中任取一球.如果取出白球,则把它放回袋中;如果取出黑球,则该球不再放回,另补一个白球放到袋中.在重复次这样的操作后,记袋中的白球个数为

1)求

2)设,求

3)证明:

【答案】123)证明见解析

【解析】

1)根据的取值以及概率,即可容易求得数学期望;

2)求得当时,以及时的概率,则问题得解;

3)对第次白球个数的数学期望分为第次取出来的是白球,或者黑球进行讨论,即可证明.

1)∵

2)∵当时,

时,第次取出来有个白球的可能性有两种:

次袋中有个白球,显然每次取出球后,球的总数保持不变,

即袋中有个白球,个黑球,第次取出来的也是白球的概率为

次袋中有个白球,第次取出来的是黑球,由于每次总数为12个,

故此时黑球数为个,这种情况发生的概率为

∴综上可知,

3)∵第次白球个数的数学期望分为两类情况:

次白球个数的数学期望为,由于白球和黑球的总数为12

次取出来的是白球的概率为

次取出来的是黑球的概率为,此时白球的个数为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线的参数方程为为参数),以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

时,判断直线与曲线的位置关系;

若直线与曲线相切于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的四个顶点恰好是一边长为2,一内角为的菱形的四个顶点.

(1)求椭圆的方程;

(2)若直线交椭圆两点,在直线上存在点,使得为等边三角形,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:

运动达人

参与者

合计

男教师

60

20

80

女教师

40

20

60

合计

100

40

140

(Ⅰ)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?

(Ⅱ)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.

参考公式:,其中.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的最小值为2,求的值;

2)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点和两个焦点构成的三角形的面积为4

1)求椭圆的方程;

2)已知直线与椭圆交于两点,试问,是否存在轴上的点,使得对任意的为定值,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,是棱的中点.

1)证明:直线平面

2)若,证明:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一所医院在某时间段为发烧超过38的病人特设发热门诊,该门诊记录了连续5天昼夜温差()与就诊人数的资料:

日期

1

2

3

4

5

昼夜温差()

8

10

13

12

7

就诊人数(人)

18

25

28

27

17

(1)求的相关系数,并说明昼夜温差()与就诊人数具有很强的线性相关关系.

(2)求就诊人数(人)关于出昼夜温差()的线性回归方程,预测昼夜温差为9时的就诊人数.

附:样本的相关系数为,当时认为两个变量有很强的线性相关关系.

回归直线方程为,其中.

参考数据:

查看答案和解析>>

同步练习册答案