【题目】已知椭圆C: =1(a>b>0),离心率为 ,两焦点分别为F1、F2 , 过F1的直线交椭圆C于M,N两点,且△F2MN的周长为8.
(1)求椭圆C的方程;
(2)过点P(m,0)作圆x2+y2=1的切线l交椭圆C于A,B两点,求弦长|AB|的最大值.
【答案】
(1)解:由题得: ,4a=8,所以a=2,
又b2=a2﹣c2,所以b=1即椭圆C的方程为
(2)解:由题意知,|m|≥1.
当m=1时,切线l的方程x=1,点A、B的坐标分别为 ,
此时 ; 当m=﹣1时,同理可得
当|m|>1时,设切线l的方程为y=k(x﹣m),(k≠0)
由
设A、B两点的坐标分别为(x1,y1),(x2,y2),
则△=64k4m2﹣16(1+4k2)(4k2m2﹣4)=48k2>0
又由l与圆 .得
所以 = = 因为|m|≥1所以 ,
且当 时,|AB|=2,
由于当m=±1时, ,所以|AB|的最大值为2
【解析】(1)利用已知条件求出椭圆方程中的几何量,即可求椭圆C的方程;(2)利用直线的斜率存在与不存在,分别与椭圆方程联立,利用韦达定理,以及弦长公式表示弦长|AB|通过基本不等式求解弦长的最大值.
【考点精析】掌握椭圆的标准方程是解答本题的根本,需要知道椭圆标准方程焦点在x轴:,焦点在y轴:.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数,α∈[0,π)).以原点O为极点,以x轴正半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρcos2θ=4sinθ. (Ⅰ)设M(x,y)为曲线C上任意一点,求x+y的取值范围;
(Ⅱ)若直线l与曲线C交于两点A,B,求|AB|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x+3|+|x﹣1|.
(1)解不等式f(x)>4;
(2)若x∈(﹣∞,﹣ ),不等式a+1<f(x)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果执行如图所示的程序框图,输入正整数N(N≥2)和实数a1 , a2 , …,an , 输出A,B,则( )
A.A和B分别是a1 , a2 , …,an中最小的数和最大的数
B.A和B分别是a1 , a2 , …,an中最大的数和最小的数
C. 为a1 , a2 , …,an的算术平均数
D.A+B为a1 , a2 , …,an的和
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义域为(﹣∞,0)∪(0,+∞),f(x)在(0,+∞)上的图象如图所示,则不等式f(x)f′(x)>0的解集是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的右焦点为( ,0),离心率为 .
(1)求椭圆C的标准方程;
(2)若动点P(x0 , y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,由于函数f(x)=sin(π﹣ωx)sin( +φ)﹣sin(ωx+ )sinφ(ω>0)的图象部分数据已污损,现可以确认点C( ,0),其中A点是图象在y轴左侧第一个与x轴的交点,B点是图象在y轴右侧第一个最高点,则f(x)在下列区间中是单调的( )
A.(0, )
B.( , )
C.( ,2π)
D.( , )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com