精英家教网 > 高中数学 > 题目详情

【题目】1证明 不可能成等差数列

2证明: 不可能为同一等差数列中的三项.

【答案】1)证明见解析;(2)证明见解析.

【解析】试题分析:(1)利用反证法,先假设成等差数列,得等量关系,再平方化简得,这与事实矛盾,即假设不成立,(2)利用反证法,先假设成等差数列,得等量关系,消去公差得整数之间关系,根据无理数性质确定矛盾,否定假设.

试题解析:1)假设 成等差数列,则

,即

因为,矛盾,所以 不可能成等差数列.

2)假设 为同一等差数列中的三项,

则存在正整数 满足

两边平方得

由于③式左边为无理数,右边为有理数,且有理数无理数,故假设不正确,

不可能为同一等差数列中的三项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】片森林原来面积为a,计划每年砍伐森林面积是上一年末森林面积的p%,当砍伐到原来面积的一半时,所用时间是10年,已知到今年末为止,森林剩余面积为原来面积的,为保护生态环境,森林面积至少要保留原来面积的

(1)求每年砍伐面积的百分比p%;

(2)到今年为止,该森林已砍伐了多少年?

(3)今年以后至多还能再砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把下列演绎推理写成三段论的形式.

1)在标准大气压下,水的沸点是100℃,所以在标准大气压下把水加热到100℃时,水会沸腾;

2)一切奇数都不能被2整除, 是奇数,所以不能被2整除;

3)三角函数都是周期函数, 是三角函数,因此是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数.

(1)求的值;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017118日开始,支付宝用户可以通过参与蚂蚁森林两种方式获得福卡(爱国福、富强福、和谐福、友善福、敬业福),除夕夜22:18,每一位提前集齐五福的用户都将获得一份现金红包.某高校一个社团在年后开学后随机调查了80位该校在读大学生,就除夕夜22:18之前是否集齐五福进行了一次调查(若未参与集五福的活动,则也等同于未集齐五福),得到具体数据如下表:

是否集齐五福

性别

合计

30

10

40

35

5

40

合计

65

15

80

(1)根据如上的列联表,能否在犯错误的概率不超过0.05的前提下,认为集齐五福与性别有关”?

(2)计算这80位大学生集齐五福的频率,并据此估算该校10000名在读大学生中集齐五福的人数;

(3)为了解集齐五福的大学生明年是否愿意继续参加集五福活动,该大学的学生会从集齐五福的学生中,选取2位男生和3位女生逐个进行采访,最后再随机选取3次采访记录放到该大学的官方网站上,求最后被选取的3次采访对象中至少有一位男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数fx)=xa的图象过点(2,4).

(1)求函数fx)的解析式;

(2)设函数hx)=4fx)-kx-8在[5,8]上是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学用五点法画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:

1)请将上表数据补充完整;函数的解析式为 (直接写出结果即可);

2)根据表格中的数据作出一个周期的图象;

3)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是(  )

A.各月的平均最低气温都在0℃以上
B.七月的平均温差比一月的平均温差大
C.三月和十一月的平均最高气温基本相同
D.平均最高气温高于20℃的月份有5个

查看答案和解析>>

同步练习册答案