精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的单调区间;

(2)若存在,使成立,求整数的最小值.

【答案】(1)当时,单调递增,当时, 单调递减;当时,上单调递增,在上单调递减;当时,上单调递减; (2).

【解析】试题分析:(1)求导,分类讨论时三种情况的单调性(2)分离含参量,构造新函数,,求导算出零点的范围,从而求出结果

解析:(1)由题意可知,

方程对应的

,即时,当时,

上单调递减;

时,方程的两根为

此时,,函数单调递增,

,函数单调递减;

时,

此时当单调递增,

时,单调递减;

综上:当时,单调递增,当时, 单调递减;

时,上单调递增,

上单调递减;

时,上单调递减;

(2)原式等价于

即存在,使成立.

,∴上单调递增.

,根据零点存在性定理,可知上有唯一零点,设该零点为, 则,且,即

由题意可知的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线)的焦点是椭圆)的右焦点,且两曲线有公共点

(1)求椭圆的方程;

(2)为坐标原点,是椭圆上不同的三点,并且的重心,试探究的面积是否为定值.若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?

优秀

合格

合计

大学组

中学组

合计

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数.

(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6.在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某班的50名学生进行不记名问卷调查,内容为本周使用手机的时间长,如表:

时间长(小时)

女生人数

4

11

3

2

0

男生人数

3

17

6

3

1

(1)求这50名学生本周使用手机的平均时间长;

(2)时间长为的7名同学中,从中抽取两名,求其中恰有一个女生的概率;

(3)若时间长为被认定“不依赖手机”,被认定“依赖手机”,根据以上数据完成列联表:

不依赖手机

依赖手机

总计

女生

男生

总计

能否在犯错概率不超过0.15的前提下,认为学生的性别与依赖手机有关系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)证明:存在唯一实数,使得直线和曲线相切;

(2)若不等式有且只有两个整数解,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线与曲线在公共点处有共同的切线,求实数的值;

(Ⅱ)在(Ⅰ)的条件下,试问函数是否有零点?如果有,求出该零点;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是平行四边形,分别是的中点.

)证明:平面平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右顶点为,上顶点为,离心率 为坐标原点,圆与直线相切.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知四边形内接于椭圆.记直线的斜率分别为,试问是否为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面,的中点,.

(1)求证:平面

(2)求四棱锥的体积.

查看答案和解析>>

同步练习册答案