精英家教网 > 高中数学 > 题目详情
若m为正整数,则=   
【答案】分析:先利用降幂公式进行化简,然后找到被积函数的原函数,然后运用微积分基本定理计算定积分即可.
解答:解:定积分∫πsin2mxdx
=
=( -sin2mx)|π

故答案为:π.
点评:本题主要考查了定积分,运用微积分基本定理计算定积分的关键是找到被积函数的原函数,属于积分中的基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若m为正整数,则
π
sin2mxdx
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若m为正整数,则乘积m(m+1)(m+2)…(m+20)=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若m为正整数,则
π-π
sin2mxdx
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若m为正整数,则乘积m(m+1)(m+2)…(m+20)=(  )
A.
A20m
B.
A21m
C.
A20m+20
D.
A21m+20

查看答案和解析>>

同步练习册答案