精英家教网 > 高中数学 > 题目详情

设一动直线过定点A(2, 0)且与抛物线相交于B、C两点,点

   B、C在轴上的射影分别为, P是线段BC上的点,且适合,求的重心Q的轨迹方程,并说明该轨迹是什么图形.

,

 ,

 --------------------------------------------------------①

代入①式得-----------------------------------------②

 代入②式得:

, 又由①式知关于是减函数且

所以Q点轨迹为一线段(抠去一点):  

()


解析:

同答案

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.
(1)求椭圆C的标准方程;
(2)D为椭圆C的右顶点,设A是椭圆上异于D的一动点,作AD的垂线交椭圆与点B,求证:直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•红桥区二模)已知圆C:(x+1)2+y2=8,定点A(1,0),M为圆上一动点,点P在AM上,且满足
AP
=
PM
,过点P且与AM垂直的直线交CM于N
(Ⅰ)求点N的轨迹E的方程:
(Ⅱ)设⊙O是以AC为直径的圆,直线l:y=kx+m与⊙O相切,并与椭圆交于不同的两点G、H,当
OG
OH
=λ,且满足
2
3
≤λ≤
3
4
时,求△GOH面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杨浦区二模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形.
(1)求椭圆C的方程;
(2)设点P是椭圆C上一动点,求线段PM的中点Q的轨迹方程;
(3)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,探究:直线AB是否过定点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点是椭圆
x2
4
+
y2
3
=1
的中心,且焦点与该椭圆右焦点重合.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若P(a,0)为x轴上一动点,过P点作直线交抛物线C于A、B两点.
(ⅰ)设S△AOB=t•tan∠AOB,试问:当a为何值时,t取得最小值,并求此最小值.
(ⅱ)若a=-1,点A关于x轴的对称点为D,证明:直线BD过定点.

查看答案和解析>>

同步练习册答案