精英家教网 > 高中数学 > 题目详情
9、(1+x2)(1-x)5展开式中x3的系数为
-15
分析:由于展开式中含x3的项为(-C53-C51)x3 ,故x3的系数为-C53-C51,运算求得结果.
解答:解:展开式中含x3的项为(-C53-C51)x3 ,故x3的系数为-C53-C51=-15,
故答案为-15.
点评:本题考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,找出展开式中含x3的项为  (-C53-C51)x3
是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列关于函数f(x)=
1+x2
+x-1
1+x2
+x+1
的五个结论:
①函数f(x)的定义域是R
②函数f(x)的值域是(-1,1)
③函数f(x)是奇函数
④函数f(x)在R上是单调增函数
⑤函数f(x)有极值
其中正确结论的序号是
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题是真命题的序号为:
③④⑤
③④⑤

①定义域为R的函数f(x),对?x∈R都有f(x-1)=f(1-x),则f(x-1)为偶函数
②定义在R上的函数y=f(x),若对?x∈R,都有f(x-5)+f(1-x)=2,则函数y=f(x)的图象关于(-4,2)中心对称
③函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则f(x+1949)是奇函数
④函数f(x)=ax3+bx2+cx+d(a≠0)的图形一定是对称中心在图象上的中心对称图形.
⑤若函数f(x)=ax3+bx2+cx+d有两不同极值点x1,x2,若|x2-x1|>|f(x2)-f(x1)|,且f(x1)=x1,则关于x的方程3a•[f(x)]2+2b•f(x)+c=0的不同实根个数必有三个.

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得  a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x
10+x
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
10-x
10+x
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•乐山二模)已知函数f(x)=
x+b,  (x≤1)
x2+ax-3
x-1 
 (x>1)
在x=1处连续,则
lim
n→∞
3bn+an
bn-an
=
3
3

查看答案和解析>>

科目:高中数学 来源:湖北省模拟题 题型:解答题

已知函数f(x)=x3-(2m+1)x2-6m(m-1)x+1,x∈R,
(1)当m=-1时,求函数y=f(x)在[-1,5]上的单调区间和最值;
(2)设f′(x)是函数y=f(x)的导数,当函数y=f′(x)的图象在(-1,5)上与x轴有唯一的公共点时,求实数m的取值范围.

查看答案和解析>>

同步练习册答案