精英家教网 > 高中数学 > 题目详情

【题目】某纪念章从2018年10月1日起开始上市,通过市场调查,得到该纪念章每1枚的市场价(单位:元)与上市时间(单位:天)的数据如下:

上市时间

4

10

36

市场价

90

51

90

(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价与上市时间的变化关系并说明理由:①;②;③

(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.

【答案】(1)选择.理由见解析;(2)当纪念章上市20天时,该纪念章的市场价最低,最低市场价为26元

【解析】

1)随着时间的增加,的值先减后增,结合函数的单调性即可得到结论;

(2)把点代入中,求出函数解析式,利用配方法,即可求出该纪念章市场价最低时的上市天数及最低的价格

(1)随着时间的增加,的值先减后增,而所给的三个函数中显然都是单调函数,不满足题意,

选择.

(2)把点代入中,

解得.

时,有最小值.

故当纪念章上市20天时,该纪念章的市场价最低,最低市场价为26元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】德化瓷器是泉州的一张名片,已知瓷器产品的质量采用综合指标值进行衡量,为一等品;为二等品;为三等品.某瓷器厂准备购进新型窑炉以提高生产效益,在某供应商提供的窑炉中任选一个试用,烧制了一批产品并统计相关数据,得到下面的频率分布直方图:

(1)估计该新型窑炉烧制的产品为二等品的概率;

(2)根据陶瓷厂的记录,产品各等次的销售率(某等次产品销量与其对应产量的比值)及单件售价情况如下:

一等品

二等品

三等品

销售率

单件售价

根据以往的销售方案,未售出的产品统一按原售价的全部处理完.已知该瓷器厂认购该窑炉的前提条件是,该窑炉烧制的产品同时满足下列两个条件:

①综合指标值的平均数(同一组中的数据用该组区间的中点值作代表)不小于

②单件平均利润值不低于元.

若该新型窑炉烧制产品的成本为元/件,月产量为件,在销售方案不变的情况下,根据以上图表数据,分析该新型窑炉是否达到瓷器厂的认购条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若,使成立,则实数的取值范围是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的顶点在原点,且该抛物线经过点,其焦点轴上.

(Ⅰ)求过点且与直线垂直的直线的方程;

(Ⅱ)设过点的直线交抛物线两点,,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在经济学中,函数的边际函数为,定义为,某公司每月最多生产台报警系统装置,生产台的收入函数为(单位元),其成本函数为(单位元),利润等于收入与成本之差.

求出利润函数及其边际利润函数

求出的利润函数及其边际利润函数是否具有相同的最大值.

(Ⅲ)你认为本题中边际利润函数最大值的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知椭圆的上下两个焦点分别为,且,椭圆过点

(1)求椭圆的标准方程;

(2)设椭圆的一个顶点为,直线交椭圆于另一个点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于在区间上有意义的函数,满足对任意的,有恒成立,厄称上是“友好”的,否则就称上是“不友好”的,现有函数.

(1)若函数在区间)上是“友好”的,求实数的取值范围;

(2)若关于的方程的解集中有且只有一个元素,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,用表示不超过的最大整数.

1)若函数,求的值;

2)若函数,求的值域;

3)若存在,使得,则称函数函数,若函数 函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列结论

(1)某学校从编号依次为001,002,…,900的900个学生中用系统抽样的方法抽取一个样本,已知样本中有两个相邻的编号分别为053,098,则样本中最大的编号为862.

(2)甲组数据的方差为5,乙组数据为5、6、9、10、5,那么这两组数据中较稳定的是甲.

(3)若两个变量的线性相关性越强,则相关系数的值越接近于1.

(4)对ABC三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.

则正确的个数是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

同步练习册答案