精英家教网 > 高中数学 > 题目详情

【题目】已知直线l1mx8yn0l22xmy10互相平行l1l2之间的距离为 求直线l1的方程.

【答案】见解析

【解析】试题分析:当两条直线的斜率存在时,两条直线平行只需斜率相等截距不等,当两条直线的斜率均不存在时,两条直线平行,当一条直线斜率不存在而另一条直线斜率存在,两条直线不平行;两条平行线间的距离可用两条平行线间的距离公式去求,但使用公式时要化为一般式,且x, y的系数一致.

试题解析:

l1l2

(1)m4时,直线l1的方程为4x8yn0

l2的方程写成4x8y20

,解得n=-22n18.

故所求直线的方程为2x4y1102x4y90.

(2)m=-4时,直线l1的方程为4x8yn0

l2的方程为2x4y10

,解得n=-18n22.

故所求直线的方程为2x4y902x4y110.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点 及圆 .
(1)设过点 的直线 与圆 交于 两点,当 时,求以线段 为直径的圆 的方程;
(2)设直线 与圆 交于 两点,是否存在实数 ,使得过点 的直线 垂直平分弦 ?若存在,求出实数 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】画正六棱柱的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,不能证明APBC的条件是(  )

A. APPBAPPC

B. APPBBCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表: A型车

出租天数

1

2

3

4

5

6

7

车辆数

5

10

30

35

15

3

2

B型车

出租天数

1

2

3

4

5

6

7

车辆数

14

20

20

16

15

10

5

( I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当 最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AB=AA1=1,E为BC中点.
(1)求证:C1D⊥D1E;
(2)若二面角B1﹣AE﹣D1的大小为90°,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2. (Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

同步练习册答案