精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=2x+$\frac{1}{4}$x-5在区间(n,n+1)(n∈N+)内有零点,则n=2.

分析 函数零点左右两边函数值的符号相反,根据函数在一个区间上两个端点的函数值的符号确定是否存在零点.

解答 解:由f(2)=4+$\frac{1}{2}$-5=-$\frac{1}{2}$<0,f(3)=8+$\frac{3}{4}$-5>0及零点定理知,
f(x)的零点在区间(2,3)上,两端点为连续整数,
∴零点所在的一个区间(n,n+1)(k∈Z)是(2,3)
∴n=2,
故答案为:2.

点评 本题主要考查函数零点的概念、函数零点的判定定理与零点定理的应用,本题的解题的关键是检验函数值的符号,属于容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设a,b,c∈R,则下列命题为真命题的是(  )
A.a>b⇒a-c>b-cB.a>b⇒ac>bcC.a>b⇒a2>b2D.a>b⇒ac2>bc2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知曲线f(x)=ex-mx+1存在与直线y=ex垂直的切线,则实数m的取值范围为($\frac{1}{e}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C的内接矩形的一条对角线上的两个顶点坐标分别为P(1,-2),Q(3,4).
(1)求圆C的方程; 
(2)若直线y=2x+b被圆C截得的弦长为$2\sqrt{5}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,平面内有三个向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$,其中$\overrightarrow{OA}$与$\overrightarrow{OC}$的夹角为30°,$\overrightarrow{OB}$与$\overrightarrow{OC}$的夹角为90°,且|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=2,|$\overrightarrow{OC}$|=2$\sqrt{3}$,若$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,(λ,μ∈R)则(  )
A.λ=4,μ=2B.λ=4,μ=1C.λ=2,μ=1D.λ=2,μ=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,点A,B是单位圆O上的两点,A,B点分别在第一,而象限,点C是圆O与x轴正半轴的交点,若∠COA=60°,∠AOB=α,点B的坐标为(-$\frac{3}{5}$,$\frac{4}{5}$).
(1)求sinα的值;
(2)已知动点P沿圆弧从C点到A点匀速运动需要2秒钟,求动点P从A点开始逆时针方向作圆周运动时,点P的纵坐标y关于时间t(秒)的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)是奇函数,当x>0时,f(x)=x•2x+a-1,若f(-1)=$\frac{3}{4}$,则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知${({m^2}+m)^{\frac{3}{5}}}≤{(3-m)^{\frac{3}{5}}}$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示,M,N分别是这段图象的最高点与最低点,且OM⊥ON,则A=(  )
A.$\frac{π}{6}$B.$\frac{\sqrt{7}π}{12}$C.$\frac{\sqrt{7}π}{6}$D.$\frac{\sqrt{7}π}{3}$

查看答案和解析>>

同步练习册答案