精英家教网 > 高中数学 > 题目详情
20.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=2x-y的最小值为(  )
A.1B.-1C.2D.-2

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,作出可行域如图

联立$\left\{\begin{array}{l}{x=1}\\{x+y-4=0}\end{array}\right.$,解得A(1,3),化目标函数z=2x-y为y=2x-z.
由图可知,当直线y=2x-z.过A时,直线在y轴上的截距最小,z有最小值为-1.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=e|x-a|(a∈R)满足f(1+x)=f(-x),且f(x)在区间[m,m+1]上是单调函数,则实数m的取值范围是(-∞,-$\frac{1}{2}$]∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线l与圆O:x2+y2=1相交于A,B两点,且|AB|=$\sqrt{3}$,则 $\overrightarrow{OA}$•$\overrightarrow{OB}$的值是(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=lg(x2-4x+3)的单增区间为(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若二次函数满足f(x+1)-f(x)=2x+3,且f(0)=3
(1)求f(x)的解析式;
(2)设g(x)=f(x)-kx,求g(x)在[0,2]的最小值ϕ(k)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线y=$\frac{{x}^{2}}{4}$-lnx的一条切线的斜率为-$\frac{1}{2}$,则切点的坐标为$({1,\frac{1}{4}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆x2+y2-2x+6y=0,则该圆的圆心及半径分别为(  )
A.(1,-3),-10B.(1,-3),$\sqrt{10}$C.(1,3),-10D.(1,3),-$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.定义:记min{x1,x2,…,xn}为x1,x2,…,xn这n个实数中的最小值,记max{x1,x2,…,xn}为x1,x2,…,xn这n个实数中的最大值,例如:min{3,-2,0}=-2.
(1)求证:min{x2+y2,xy}=xy;
(2)已知f(x)=max{|x|,2x+3}(x∈R),求f(x)的最小值;
(3)若H=max{$\frac{1}{{\sqrt{x}}}$,$\frac{x+y}{{\sqrt{xy}}}$,$\frac{1}{{\sqrt{y}}}}$}(x,y∈R+),求H的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在平行四边形ABCD中,P,Q分别是BC和CD的中点.
(1)若AB=2,AD=1,∠BAD=60°,求$\overrightarrow{AB}$•$\overrightarrow{AC}$及cos∠BAC的余弦值;
(2)若$\overrightarrow{AC}$=λ$\overrightarrow{AP}$+$μ\overrightarrow{BQ}$,求λ+μ的值.

查看答案和解析>>

同步练习册答案