精英家教网 > 高中数学 > 题目详情
在△ABC中,已知p:三内角A、B、C成等差数列;q:B=60°.则p是q的( )
A.充分必要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
【答案】分析:先判断p⇒q与q⇒p的真假,再根据充要条件的定义给出结论;也可判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
解答:解:在△ABC中,若三内角A、B、C成等差数列;
则A+C=2B,又由A+B+C=180°,故B=60°
即p⇒q为真
反之,当故B=60°,由A+B+C=180°,得A+C=120°=2B,即三内角A、B、C成等差数列
故q⇒p也为真
故p是q的充分必要条件
故选A
点评:判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、在△ABC中,已知p:三内角A、B、C成等差数列;q:B=60°.则p是q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知P是BC边上一点,
BP
=2
PC
AP
AB
+
2
3
AC
,则λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在△ABC中,已知P为中线AD的中点.过点P作一直线分别和边AB、AC交于点M、N,设
AM
=x
AB
AN
=y
AC

(Ⅰ)求证:△ABC的面积S△ABC=
1
2
BA•BC•sinB

(Ⅱ)求当x+y=
4
3
时,求△AMN与△ABC的面积比.

查看答案和解析>>

科目:高中数学 来源:蓝山县模拟 题型:单选题

在△ABC中,已知p:三内角A、B、C成等差数列;q:B=60°.则p是q的(  )
A.充分必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省宁德市福鼎一中高三(下)第二次质检数学复习卷1(理科)(解析版) 题型:选择题

在△ABC中,已知p:三内角A、B、C成等差数列;q:B=60°.则p是q的( )
A.充分必要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案