精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{a}$=(2,3),则与$\overrightarrow{a}$垂直的一个向量$\overrightarrow{b}$及$\overrightarrow{a}$的长度分别为(  )
A.$\overrightarrow{b}$=(3,2),|$\overrightarrow{a}$|=5B.$\overrightarrow{b}$=(-3,2),|$\overrightarrow{a}$|=13C.$\overrightarrow{b}$=(3,-2),|$\overrightarrow{a}$|=5D.$\overrightarrow{b}$=(3,-2),|$\overrightarrow{a}$|=$\sqrt{13}$

分析 根据平面向量的数量积公式以及向量模的计算解答即可.

解答 解:与$\overrightarrow{a}$垂直的一个向量$\overrightarrow{b}$是它们数量积为0 的向量,$\overrightarrow{a}$的长度为$\sqrt{{2}^{2}+{3}^{2}}=\sqrt{13}$;
故选D.

点评 平面向量垂直,数量积为0;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知$f(x+\frac{1}{x})={x^2}+\frac{1}{x^2}$,则函数f(x)=(  )
A.x2-2(x≠0)B.x2-2(x≥2)C.x2-2(|x|≥2)D.x2-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=$\frac{x+b}{(2x+1)(x-a)}$为奇函数,则a+b=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求由下列函数的导数$\frac{dy}{dx}$:
(1)y=$\sqrt{xsinx\sqrt{1-{e}^{x}}}$
(2)y=$\frac{\sqrt{x+2}(3-x)^{4}}{(x+1)^{5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lg(x+$\frac{a}{x}$)(a∈R).
(1)求f(x)的定义域;
(2)若a<0,集合A={y|y=f(x),$\frac{1}{2}$≤x≤2},B=[-1,1],且A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据下列条件,求抛物线的方程,并画出图形:
(1)顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6;
(2)顶点在原点,对称轴是y轴,并经过点P(-6,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知A(1,-1),B(4,2),P为AB的中点,则$\overrightarrow{AP}$的坐标为(  )
A.($\frac{3}{2}$,$\frac{3}{2}$)B.($\frac{3}{2}$,-$\frac{1}{2}$)C.(5,4)D.(3,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知tan(π-α)=-$\frac{1}{2}$,求$\frac{2sin(π-α)-3cos(π+α)}{3cos(π-α)+4cos(\frac{π}{2}+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.y=sin(ωx+φ)(ω>0)与y=a函数图象相交于相邻三点,从左到右为P、Q、R,若PQ=3QR,则a的值为(  )
A.±$\frac{1}{2}$B.±$\frac{\sqrt{2}}{2}$C.±$\frac{\sqrt{3}}{2}$D.±1

查看答案和解析>>

同步练习册答案